- Droite sécante
-
En géométrie, une droite est sécante à un autre objet géométrique lorsqu'elle « coupe » cet autre objet.
Pour effectuer l'étude d'une courbe au voisinage d'un de ses points P, il est utile de considérer les sécantes issues de P, c'est-à-dire les droites passant par P et un autre point Q de la courbe. C'est à partir de ces sécantes qu'est définie la notion de tangente à la courbe au point P : il s'agit de la limite, quand elle existe, des droites sécantes issues de P lorsque le deuxième point Q se rapproche de P le long de la courbe.
De ce fait, lorsque Q est suffisamment proche de P, la sécante peut être considérée comme une approximation de la tangente.
Dans le cas particulier de la courbe représentative d'une fonction numérique y=f(x), la pente de la tangente est la limite de la pente des sécantes, ce qui donne une interprétation géométrique de la dérivabilité d’une fonction.
Approximation par une sécante
Considérons la courbe d’équation y = f(x) dans un système de coordonnées cartésiennes, et considérons un point P de coordonnées (c, f(c)), et un autre point Q de coordonnées (c + Δx, f(c + Δx)). Alors la pente m de la droite sécante, passant pas P et Q, est donnée par:
Le membre de droite de l’équation précédente est le rapport de Newton en c (ou taux d’accroissement). Lorsque Δx s’approche de zéro, ce rapport se rapproche du nombre dérivé f'(c), en supposant l’existence de la dérivée.
Voir aussi
Wikimedia Foundation. 2010.