Adhérence (Mathématiques)

Adhérence (Mathématiques)

Adhérence (mathématiques)

Page d'aide sur l'homonymie Pour les articles homonymes, voir Adhérence.

En topologie, l'adhérence d'une partie d'un espace topologique est le plus petit ensemble fermé contenant cette partie. On retrouve cette notion particulièrement dans la convergence de suites dans les espaces métriques avec la notion de valeur d'adhérence.

Sommaire

Définitions

En topologie, l'adhérence d'une partie X d'un espace topologique E est le plus petit ensemble fermé de E qui contienne X.

L'existence d'un tel fermé est claire : il existe au moins un fermé contenant X, à savoir l'espace E lui-même ; d'autre part, l'intersection de tous les fermés contenant X est un fermé contenant X, et est le plus petit ayant cette propriété.

L'adhérence de X est aussi appelée fermeture de X et se note souvent \overline{X}.

On dit d'un point x de E qu'il est adhérent à X lorsque tout voisinage de x rencontre X.

Caractérisations

Ensemble des points adhérents

L'adhérence de X est égale à l'ensemble des points qui lui sont adhérents.

En effet :

  1. Si le point x de E est adhérent à X, il ne peut appartenir à l'ouvert E-\overline{X}, car celui-ci serait alors un voisinage de x ne rencontrant pas X ; donc il appartient à \overline{X}.
  2. Si le point x de E n'est pas adhérent à X, il existe un voisinage de x qui ne rencontre pas X ; ce voisinage contient un ouvert U qui contient x et ne rencontre pas X. Il s'ensuit que le complémentaire de U dans E est un fermé qui contient X, et donc qui contient \overline{X}. Puisque x est dans U, x n'est pas dans \overline{X}.

Intuitivement, l'adhérence d'une partie X contient tous les points de l'espace qui sont dans X ou qui sont trop près de X pour que l'on puisse y « bricoler » localement sans toucher à X.

Espaces métriques et suites

Dans un espace métrique (la topologie est issue d'une distance sur l'espace considéré), l'adhérence d'un ensemble X de E est l'ensemble contenant toutes les limites de suites convergentes dans E et formées des éléments de X.

Exemples

Caractère archimédien de \mathbb R : l'ensemble des réels \mathbb R est l'adhérence de l'ensemble des rationnels \mathbb Q. En effet, tout ouvert contenant un irrationnel contient un rationnel. Tout irrationnel est donc dans l'adhérence de \mathbb Q.

L'adhérence d'un intervalle de \mathbb R, c'est l'intervalle fermé de mêmes bornes : l'adhérence de ]-\infty,a[ est l'intervalle ]-\infty,a].

Assez souvent on parle de \bar{\mathbb{R}} comme adhérence de \mathbb{R}, mais cette notion veut simplement dire qu'on étend la notion de convergence aux valeurs infinies : ainsi la suite des entiers converge dans \bar{\mathbb{R}} vers +\infty. Cela permet de donner un sens différent à la notion de divergence : ce qui diverge n'admet pas de limite, fût elle infinie. C'est le concept de droite réelle achevée.

Densité

Article détaillé : Densité (mathématiques).

On dit qu'une partie X d'un espace topologique E est dense lorsque son adhérence est l'espace E tout entier. Une telle partie se caractérise donc par le fait que tout ouvert non vide en contient un point.

Ainsi, le caractère archimédien de \mathbb{R} fait que \mathbb{Q} est dense dans \mathbb{R}.

Un point x de X est dense si {x} est dense. On l'appelle parfois aussi point générique.

Intuitivement, les parties denses d'un espace sont donc des parties qui sont très grosses : on ne peut pas les éviter.

Pièges

Boules ouvertes et boules fermées

Dans un espace métrique, on définit des boules ouvertes et des boules fermées, et la tentation est grande d'utiliser B_f=\overline B dans ce cadre. Il est vrai que dans un certain nombre de cas, cela marche bien, notamment les \mathbb R^n avec la distance usuelle, et plus généralement pour la distance \Vert x-y\Vert\, dans un espace vectoriel normé...

Néanmoins, c'est faux en général ; voyons l'exemple le plus simple : soit un ensemble E, avec au moins deux éléments. On définit une métrique dessus ainsi : la distance entre deux points distincts est 1. La boule ouverte de rayon 1 centrée en un point est donc ce point. La boule fermée de rayon 1 centrée en un point est donc l'espace entier. L'adhérence de la boule ouverte de rayon 1 centrée en un point est le point.

Si dans le cadre d'espaces vectoriels sur \mathbb{R} ou \mathbb{C} normés de dimension finie, les propriétés de l'adhérence restent assez intuitives, il faut aussi se méfier des caractéristiques des espaces de dimension infinie.

Un point c'est petit

Considérons l'ensemble \mathbb{N} des entiers naturels. On y définit une topologie (via des fermés) de la façon suivante :

  • un ensemble fini d'entiers non nuls est fermé ;
  • l'espace entier est fermé.

Dans ce cas, l'adhérence de {0} est l'espace \mathbb{N} tout entier, ce qui signifie qu'on ne peut pas mettre le point 0 de côté pour travailler au voisinage d'un autre point. C'est un point dense/générique.

NB : en géométrie algébrique, ce genre de situation est très courant, car l'espace de base, le spectre d'anneau, vérifie souvent ce genre de propriétés ; en fait, cet exemple est homéomorphe à Spec\,\mathbb Z par simple substitution des nombres premiers aux entiers non nuls.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Adh%C3%A9rence (math%C3%A9matiques) ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Adhérence (Mathématiques) de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Adherence (mathematiques) — Adhérence (mathématiques) Pour les articles homonymes, voir Adhérence. En topologie, l adhérence d une partie d un espace topologique est le plus petit ensemble fermé contenant cette partie. On retrouve cette notion particulièrement dans la… …   Wikipédia en Français

  • Adhérence (mathématiques) — Pour les articles homonymes, voir Adhérence. En topologie, l adhérence d une partie d un espace topologique est le plus petit ensemble fermé contenant cette partie. On retrouve cette notion particulièrement dans la convergence de suites dans les… …   Wikipédia en Français

  • Adherence — Adhérence Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom …   Wikipédia en Français

  • Adhérence — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « adhérence », sur le Wiktionnaire (dictionnaire universel) Physique L’adhérence est un phénomène qui… …   Wikipédia en Français

  • Adherence, interieur et frontiere d'un convexe — Adhérence, intérieur et frontière d un convexe Dans le cas particulier de parties convexes d un espace vectoriel topologique, les opérateurs topologiques élémentaires d adhérence ou intérieur préservent la convexité. Sous une réserve technique… …   Wikipédia en Français

  • Adhérence, intérieur et frontière d'un convexe — Dans le cas particulier de parties convexes d un espace vectoriel topologique, les opérateurs topologiques élémentaires d adhérence ou intérieur préservent la convexité. Sous une réserve technique mineure (qui justifie l introduction de concepts… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Suite (mathématiques) — Pour les articles homonymes, voir Suite. En mathématiques, une suite[1] est une famille d éléments indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain… …   Wikipédia en Français

  • Séquence (mathématiques) — Suite (mathématiques) Pour les articles homonymes, voir Suite. En mathématiques, une suite est une famille d éléments indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”