ADFGVX

ADFGVX

Chiffre ADFGVX

Le chiffre ADFGVX est un système de chiffrement allemand inventé par le colonel Fritz Nebel et introduit à la fin de la Première Guerre mondiale.

Il est inspiré du carré de Polybe et se nommait initialement GEDEFU 18 (GEheimschrift DEr FUnker 18 : chiffre des radiotélégraphistes 18). Les coordonnées des lettres dans le carré n'étaient pas données par des chiffres, mais par les lettres A D F G X. Ces lettres ont été choisies de façon que leurs correspondances en morse soient très différentes les unes des autres, de façon à éviter les erreurs de transmission par radio (TSF). L'originalité de ce système venait que le texte obtenu après une première substitution était ensuite soumis à une permutation des colonnes du carré.

Sommaire

L'utilisation et le déchiffrement du chiffre ADFGVX

Le chiffre ADFGVX a été utilisé à partir du 5 mars 1918 afin de préparer l'offensive allemande sur Paris.

Dès juin, les Allemands ne se contentent plus de leurs lettres A D F G X, voici qu'apparaît en plus la lettre V. Les Allemands utilisèrent en effet pour leurs chiffrements deux modèles de carrés : l'un de 25 lettres, l'autre de 36 symboles, ce dernier étant obtenu par l'adjonction des 10 chiffres à un alphabet complet. Le carré de substitution était construit grâce à une clef qui changeait quotidiennement. Le chiffre utilisant le carré de 36 symboles est connu sous le nom de chiffre ADFGVX.

Le 2 juin, alors que la situation devenait urgente du côté français, le lieutenant Georges Painvin parvint à déchiffrer un premier message en se basant sur une étude statistique extrêmement poussée, puis une quantité d'autres, ce qui fit perdre aux Allemands tout effet de surprise et contribua à l'échec de leurs offensives.

Principe du chiffrement

Le chiffrement s'effectue en deux étapes :

  • Le chiffrement du message par substitution des lettres.
  • La transposition du message obtenu, basée sur l'utilisation d'une clef.

La substitution

Dans un premier temps, chaque lettre du message est remplacée par deux codes correspondant à sa position dans le tableau de chiffrement (composé de 6 colonnes donnant le premier code transmis et de 6 lignes donnant le second). Les deux correspondants doivent bien sûr disposer du même tableau.

Par exemple, si l'on utilise le tableau de chiffrement suivant :

  Premier code
A
·–
D
–··
F
··–·
G
––·
V
···–
X
–··–
Second
code
A
·–
8 t b w r q
D
–··
p 4 c g 2 9
F
··–·
3 o 5 m x e
G
––·
d a z j s y
V
···–
l h 7 u v 0
X
–··–
n 1 k 6 i f

le message lancer assaut deviendra : AV DG AX FD XF VA DG VG VG DG GV DA.

L'utilisation des six lettres A D F G V X est due au faible risque de confusion entre ces lettres lorsque le message est retranscrit en morse (indiqué dans la table ci-dessus sous les codes correspondants).

La transposition

La deuxième étape, d'où provient toute la difficulté du code, est la transposition, basée sur un mot clé.

  • Tout d'abord, le message codé est retranscrit dans un nouveau tableau dont la première ligne contient le mot clé.
  • Puis, on échange les colonnes de telle sorte que les lettres constituant le mot clé se retrouvent classées dans l'ordre alphabétique.

Si on reprend l'exemple précédent, avec pour mot clé chat, on obtient le tableau 1 suivant ; après classement alphabétique des lettres de la clé, le tableau 2 contient le message chiffré final :

Clé originale c h a t
Message
codé
A V D G
A X F D
X F V A
D G V G
V G D G
G V D A
Clé classée a c h t
Message
codé
et
transposé
D A V G
F A X D
V X F A
V D G G
D V G G
D G V A

Le message définitif, obtenu par lecture des colonnes du tableau, est donc : DF VV DD AA XD VG VX FG GV GD AG GA. Le destinataire le déchiffrera en suivant ces mêmes étapes dans l'ordre inverse, à condition de connaître la clé originale de transposition et de disposer de la table 6×6 de codage.

On peut dissimuler la table de codage ainsi que la clé utilisés en les stockant dans un texte inventé (par exemple la seconde lettre ou le second chiffre de certains mots ou nombres d'un petit texte), ou en prenant ce texte dans un livre dont on ne transmet en clair qu'un numéro de page, ou le premier mot d'une page de dictionnaire ou d'un annuaire.

Cryptanalyse

La difficulté pour casser ce code (cryptanalyse) est liée au fait que les occurrences de lettres du message original ne peuvent pas être repérées simplement par leur fréquence relative sans connaitre les positions relatives où les deux moitiés du code sont situées. Toutefois, le nombre de recombinaisons possibles reste assez faible, même lorsque la clé est assez longue, et il est possible de repérer des fréquences caractéristiques si le message original est suffisamment long, simplement en explorant les paires de codes à tous les intervalles possibles ; on en déduit la longueur de la clé, donc la largeur des tables de transposition.

Puis avec les fréquences de chaque paire obtenue, on en déduit les premières lettres (en commençant par les plus fréquentes dans la langue supposée du message, par exemple les lettres e, s, a, n), et on déduit les autres lettres moins fréquentes par des recherches dans un dictionnaire. La table de codage contenant assez peu de cases (26 lettres et 10 chiffres) il est possible de la remplir ainsi entièrement assez facilement à l'aide de ces statistiques connues propres à la langue utilisée dans le message original.

Une amélioration de cet algorithme de chiffrement consiste à utiliser des tables de codage beaucoup plus larges, par exemple une table tridimensionnelle 6x6x6 contenant des cellules pour des groupes de lettres ou pour une lettre accompagnée d'un chiffre issu d'une suite aléatoire connue; on obtient alors 3 codes par lettre ou chiffre original, on peut coder aussi les ponctuations et différencier les majuscules, voire les espaces séparateurs. La clé de transposition peut aussi être augmentée en utilisant une table de transposition bien plus large.

Liens externes

  • Portail de l’histoire militaire Portail de l’histoire militaire
  • Portail de la cryptologie Portail de la cryptologie
  • Cet article contient tout ou une partie d'un document provenant du site Ars Cryptographica. L'auteur autorise Wikipédia à utiliser les textes présents sur son site si la source originale est mentionnée.
Ce document provient de « Chiffre ADFGVX ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article ADFGVX de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • ADFGVX — ADFGX und ADFGVX sind Verschlüsselungsverfahren, die die deutschen Militärs im Ersten Weltkrieg einsetzten. Sie dienten dazu, Nachrichten mittels drahtloser Telegrafie geheim zu übermitteln. Die Verschlüsselung geschieht zweistufig und basiert… …   Deutsch Wikipedia

  • ADFGVX cipher — In cryptography, the ADFGVX cipher was a field cipher used by the German Army during World War I. ADFGVX was in fact an extension of an earlier cipher called ADFGX. Invented by Colonel Fritz Nebel and introduced in March 1918, the cipher was a… …   Wikipedia

  • ADFGVX-Verschlüsselung — ADFGX und ADFGVX sind Verschlüsselungsverfahren, die die deutschen Militärs im Ersten Weltkrieg einsetzten. Sie dienten dazu, Nachrichten mittels drahtloser Telegrafie geheim zu übermitteln. Die Verschlüsselung geschieht zweistufig und basiert… …   Deutsch Wikipedia

  • ADFGVX — abbr. crypt. A bilateral substitution cipher used during World War II …   Dictionary of English abbreviation

  • Chiffre ADFGVX — Le chiffre ADFGVX est un système de chiffrement allemand inventé par le colonel Fritz Nebel et introduit à la fin de la Première Guerre mondiale. Il est inspiré du carré de Polybe et se nommait initialement GEDEFU 18 (GEheimschrift DEr FUnker… …   Wikipédia en Français

  • Fritz Nebel — ADFGX und ADFGVX sind Verschlüsselungsverfahren, die die deutschen Militärs im Ersten Weltkrieg einsetzten. Sie dienten dazu, Nachrichten mittels drahtloser Telegrafie geheim zu übermitteln. Die Verschlüsselung geschieht zweistufig und basiert… …   Deutsch Wikipedia

  • ADFGX — und ADFGVX sind Verschlüsselungsverfahren, die die deutschen Militärs im Ersten Weltkrieg einsetzten. Sie dienten dazu, Nachrichten mittels drahtloser Telegrafie geheim zu übermitteln. Die Verschlüsselung geschieht zweistufig und basiert auf… …   Deutsch Wikipedia

  • Georges Painvin — Infobox Person name = Georges Painvin image size = 200px caption = Georges Painvin in 1914 birth date = 1886 birth place = Nantes death date = 1980 death place = Paris occupation = Cryptographer spouse = parents = children =Georges Jean Painvin… …   Wikipedia

  • cryptology — cryptologist, n. cryptologic /krip tl oj ik/, cryptological, adj. /krip tol euh jee/, n. 1. cryptography. 2. the science and study of cryptanalysis and cryptography. [1635 45; < NL cryptologia. See CRYPTO , LOGY] * * * Introduction …   Universalium

  • Transposition cipher — In cryptography, a transposition cipher is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”