Cercle osculateur

Cercle osculateur
Au point M de la courbe rouge, le cercle osculateur (en pointillés) approche mieux la courbe qu'un cercle tangent quelconque (passant par N). Son centre O et son rayon R sont le centre de courbure et le rayon de courbure de la courbe en M.
Évolution du cercle osculateur en un point, lorsque ce point parcourt la courbe

En géométrie différentielle, le cercle osculateur ou cercle de courbure en un point d'une courbe est un objet permettant la description locale de cette courbe. Parmi les cercles passant par ce point, c'est celui qui « épouse cette courbe le mieux possible », donc mieux qu'un cercle tangent quelconque, d'où le nom de cercle osculateur (littéralement, « qui donne un baiser »)[1] [2].

Sommaire

Définitions et propriétés

Une courbe suffisamment régulière possède un cercle de courbure en tout point birégulier, c'est-à-dire en tout point pour lesquels les vecteurs vitesse et accélération sont non colinéaires.

Il est possible de définir le cercle de courbure à partir de la courbure et des éléments du repère de Frenet, ou au contraire de donner une définition géométrique du cercle de courbure, et de définir à partir de lui la courbure.

Défini de façon directe, le cercle de courbure est le cercle le plus proche de la courbe en P, c'est l'unique cercle osculateur à la courbe en ce point. Ceci signifie qu'il constitue une très bonne approximation de la courbe, meilleure qu'un cercle tangent quelconque. En effet, il donne non seulement une idée de la direction dans laquelle la courbe avance (direction de la tangente), mais aussi de sa tendance à tourner de part ou d'autre de la tangente.

Le cercle de courbure au point de paramètre t0 est aussi la limite, lorsque t tend vers t0, du cercle passant par les points de paramètre t et t0 et tangent à la courbe en t0 (un tel cercle existe pour t assez proche de t0).

Le cercle de courbure en un point P de la courbe a pour rayon l'inverse de la courbure en P, appelé rayon de courbure. Il est centré sur la droite normale à la courbe en P, et situé à l'intérieur de la concavité de la courbe (la courbe s'enroule autour de son centre de courbure). La tangente à la courbe en P est donc tangente également au cercle de courbure.

Propriétés du centre de courbure

Le centre de courbure peut donc être exprimé à partir des éléments du repère de Frénet par la formule suivante

\overrightarrow{P\Omega} = \frac1{\gamma} \vec{N}

Le centre de courbure en P peut être vu également comme le point d'intersection de la normale en P avec une normale infiniment proche. De ce point de vue, la courbe formée par les centres de courbure successifs, appelée développée de la courbe initiale, est l'enveloppe de la famille des normales à la courbe.

Démonstrations et étude de la position de la courbe et du cercle osculateur

Toutes les propriétés précédentes peuvent être établies de façon analytique. Pour simplifier au maximum l'étude, on munit l'arc d'un paramétrage par l'abscisse curviligne en prenant pour origine le point en lequel on veut calculer le cercle de courbure. Avec ces hypothèses, les vecteurs dérivés successifs sont

\frac{dM}{ds}=T \qquad \frac{d^2M}{ds^2}=\gamma N \qquad  
 \frac{d^3M}{ds^3}=\frac{d\gamma}{ds}N - \gamma^2 T

γ est la courbure.

Les calculs se feront dans le repère de Frenet associé au point d'étude : on note X(s) et Y(s) les coordonnées des points de la courbe relativement à ce repère. Alors

 \begin{cases} X(0)=0 \qquad Y(0)=0 \\
X'(0)=1 \qquad Y'(0)=0 \\
X''(0)=0 \qquad Y''(0)=\gamma(0) \\
X'''(0)=-\gamma(0)^2 \qquad Y'''(0)=\frac{d\gamma}{ds}(0) \end{cases}

Si un cercle est osculateur à la courbe au point s=0, il admet pour tangente la droite Y=0, donc son centre se trouve en un point de coordonnées du type (0,Y0). On forme l'équation d'un tel cercle : X2+(Y-Y0)2=Y02. On peut donc vérifier si le point courant sur la courbe est à l'intérieur ou à l'extérieur en calculant le développement limité de l'expression

X(s)^2+(Y(s) -Y_0)^2-Y_0^2=(1-Y_0 \gamma(0)) s^2 - \frac{Y_0}{3}\frac{d\gamma}{ds}(0) s^3+o(s^3)

La condition nécessaire et suffisante pour que le cercle soit osculateur est l'annulation du premier terme, ce qui donne bien Y_0=\frac1{\gamma(0)} rayon de courbure. Ceci prouve l'existence et l'unicité du cercle osculateur.

Cercle surosculateur avec un contact d'ordre 4

En outre la position par rapport au cercle osculateur est donnée par le signe de l'expression - \frac{Y_0}{3}\frac{d\gamma}{ds}(0) s^3 + o(s^3):

  • si \frac{d\gamma}{ds}(0) \neq 0 (cas le plus fréquent), la courbe traverse le cercle osculateur en ce point. L'ordre de multiplicité du point de contact est 3 exactement[3].
  • sinon le point d'étude est un sommet : l'ordre de multiplicité du point d'intersection est 4 ou plus, le cercle est dit surosculateur. Dans ce dernier cas il faudrait poursuivre le développement limité pour connaître la position de la courbe. En général elle reste toujours du même côté du cercle surosculateur.

Références

  1. du latin osculare : donner un baiser
  2. Le terme apparaît chez Leibniz, Meditatio nova de natura anguli contactus et osculi, Acta Eruditorum, Juin 1686, in Gerhardt, Mathematische Schriften, tome VII, p. 326-329, où Leibniz distingue les cercles touchant une courbe donnée (circulo curvam propositam tangente) du cercle baisant (osculante) celle-ci. Voir aussi Marc Parmentier, La naissance du calcul différentiel, Paris, Vrin, (1989), pp. 122-125, pour une traduction plus moderne
  3. Il est de 1 pour un cercle sécant, de 2 pour un cercle tangent. Leibniz, dans Meditatio nova de natura anguli contactus et osculi, croyait de manière erronée qu'il était de 4 pour le cercle osculateur

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Cercle osculateur de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Cercle Osculateur — Tangente et cercle de courbure en un point P de la courbe C En géométrie différentielle, le cercle osculateur ou cercle de courbure est un outil permettant la description locale des courbes. Il s agit d un cercle qui approche la courbe mieux que… …   Wikipédia en Français

  • Cercle osculateur à une courbe en un point M — ● Cercle osculateur à une courbe en un point M cercle centré sur le centre de courbure C de la courbe en M, et de rayon CM …   Encyclopédie Universelle

  • Cercle De Courbure — Cercle osculateur Tangente et cercle de courbure en un point P de la courbe C En géométrie différentielle, le cercle osculateur ou cercle de courbure est un outil permettant la description locale des courbes. Il s agit d un cercle qui approche la …   Wikipédia en Français

  • Cercle de courbure — Cercle osculateur Tangente et cercle de courbure en un point P de la courbe C En géométrie différentielle, le cercle osculateur ou cercle de courbure est un outil permettant la description locale des courbes. Il s agit d un cercle qui approche la …   Wikipédia en Français

  • osculateur — osculateur, trice [ ɔskylatɶr, tris ] adj. • 1701; du lat. osculari « embrasser » ♦ Géom. Se dit d une courbe, d une surface, etc., qui, en un point donné, a le contact de l ordre le plus élevé avec une autre courbe, surface. Plan osculateur;… …   Encyclopédie Universelle

  • osculateur — osculateur, trice (o sku la teur, tri s ) adj. Terme de géométrie. Cercle osculateur, courbe osculatrice, solide osculateur, cercle, courbe, solide qui a deux éléments infinitésimaux communs avec une autre courbe, présente la même courbure qu… …   Dictionnaire de la Langue Française d'Émile Littré

  • OSCULATEUR, TRICE — adj. T. de Géométrie Il se dit d’une Courbe, d’une surface d’une nature déterminée, qui a le contact d’ordre le plus élevé possible en un point d’une courbe donnée, d’une surface donnée. Cercle osculateur, sphère osculatrice …   Dictionnaire de l'Academie Francaise, 8eme edition (1935)

  • osculatrice — ● osculateur, osculatrice adjectif (latin osculari, baiser) Cercle osculateur à une courbe en un point M, cercle centré sur le centre de courbure C de la courbe en M, et de rayon CM. Plan osculateur à une courbe gauche en un point M, plan défini… …   Encyclopédie Universelle

  • Courbe — En géométrie, le mot courbe, ou ligne courbe désigne certains sous ensembles du plan, de l espace usuels. Par exemple, les droites, les segments, les lignes polygonales et les cercles sont des courbes. La notion générale de courbe se décline en… …   Wikipédia en Français

  • Repère de Frenet — En cinématique ou en géométrie différentielle, le repère de Frenet ou repère de Serret Frenet est un outil d étude du comportement local des courbes. Il s agit d un repère local associé à un point P, décrivant une courbe (C). Son mode de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”