Calcul variationnel

Calcul variationnel

Calcul des variations

En analyse fonctionnelle, le calcul des variations (ou calcul variationnel) est un ensemble de méthodes permettant de déterminer les points critiques ou les extrémales de fonctionnelles à l'aide de l'équation d'Euler-Lagrange.

L'application des théories de Galois, d'Abel et de la transformée de Laplace permit d'en faire toute une branche fructueuse des mathématiques. Elle trouve de nombreuses applications en physique mathématique, comme les principes variationnels ou la recherche de courbes ou surfaces minimales comme celles associées aux théorèmes isopérimétriques, de courbes brachistochrones et de géodésiques.

Sommaire

Variations première et seconde

Équation de Jacobi

Points conjugués et condition de Legendre

Condition de Weierstrass

Condition de Weierstrass

Revenons-en à l'expression de l'intégrale

W = \int_{x_0}^{x_1} f(x,y,y')\;\mathrm dx

et considérons un champ F d'extrémales se composant d'une famille de ces courbes à un paramètre α. Chacune d'elles satisfait naturellement à l'équation d'Euler-Lagrange :

\frac{\mathrm d}{\mathrm dx}\frac{\partial f}{\partial y'} - \frac{\partial f}{\partial y} = 0.

En adoptant la représentation paramétrique : x0, x1 et α, fonctions de t, x0 et x1 décrivent des courbes C et D lorsque t varie, et la variation de W d'une extrémale à l'autre est[1]

\delta W = \left[ \left( f + \frac{\partial f}{\partial y'} (Y' - y') \right) \delta x \right]_{0 \to 1},

y' est le coefficient angulaire de la tangente à l'extrémale et Y' celui de la tangente à la courbe C ou D.

Notes

  1. En tenant compte de la formule
    \textstyle\delta W = [L_1\,\delta t_1]_{Q'_1P_1} - [L_0\,\delta t_0]_{Q'_0P_0} + \int_{(Q'_0, t_0)}^{(Q'_1, t_1)} L\;\mathrm dt - \int_{(Q_0, t_0)}^{(Q_1, t_1)} L\;\mathrm dt
    établie plus haut.

Voir aussi

Bibliographie

  • H. Goldstein (1980). Classical Mechanics (Second Edition), Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN 0-201-02969-3.

Liens internes

  • Portail des mathématiques Portail des mathématiques
  • Portail de la physique Portail de la physique
  • Portail de la géodésie et de la géophysique Portail de la géodésie et de la géophysique
Ce document provient de « Calcul des variations ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Calcul variationnel de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Calcul Des Variations — En analyse fonctionnelle, le calcul des variations (ou calcul variationnel) est un ensemble de méthodes permettant de déterminer les points critiques ou les extrémales de fonctionnelles à l aide de l équation d Euler Lagrange. L application des… …   Wikipédia en Français

  • Calcul des variations — En analyse fonctionnelle, le calcul des variations (ou calcul variationnel) est un ensemble de méthodes permettant de déterminer les points critiques ou les extrémales de fonctionnelles à l aide de l équation d Euler Lagrange. L application des… …   Wikipédia en Français

  • variationnel — ● variationnel, variationnelle adjectif Relatif à la variation d une grandeur, en particulier au calcul des variations. variationnel, elle [vaʀjasjɔnɛl] adj. ÉTYM. Mil. XXe (in Larousse, 1968); de variation. ❖ ♦ Didact. Relatif à …   Encyclopédie Universelle

  • VARIATIONS (CALCUL DES) — L’étude d’une fonction à valeurs réelles comporte en particulier la détermination de ses extrémums. C’est là un des objets du calcul différentiel classique lorsque la source de cette fonction est un espace numérique; c’est l’objet de ce qu’Euler… …   Encyclopédie Universelle

  • Principe variationnel — Un principe variationnel est un principe physique issu d un problème exprimé sous une forme variationnelle. Dans de nombreux cas, la résolution des équations de la mécanique peut se ramener à la recherche de géodésiques dans un espace général… …   Wikipédia en Français

  • Condition de Weierstrass — Calcul des variations En analyse fonctionnelle, le calcul des variations (ou calcul variationnel) est un ensemble de méthodes permettant de déterminer les points critiques ou les extrémales de fonctionnelles à l aide de l équation d Euler… …   Wikipédia en Français

  • Structure des noyaux atomiques — Structure nucléaire La connaissance de la structure des noyaux atomiques, ou structure nucléaire est un des chapitres clés de la physique nucléaire. Compte tenu de son importance, on en a fait un article séparé, et on consultera avec profit… …   Wikipédia en Français

  • Structure nucleaire — Structure nucléaire La connaissance de la structure des noyaux atomiques, ou structure nucléaire est un des chapitres clés de la physique nucléaire. Compte tenu de son importance, on en a fait un article séparé, et on consultera avec profit… …   Wikipédia en Français

  • Structure nucléaire — La connaissance de la structure des noyaux atomiques, ou structure nucléaire est un des chapitres clés de la physique nucléaire. Compte tenu de son importance, on en a fait un article séparé, et on consultera avec profit l’article physique… …   Wikipédia en Français

  • Theoreme isoperimetrique — Théorème isopérimétrique En géométrie, un théorème isopérimétrique traite d une question concernant les compacts d un espace métrique muni d une mesure. Un exemple simple est donné par les compacts d un plan euclidien. Les compacts concernés sont …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”