Approximation

Une approximation est une représentation grossière c'est-à-dire manquant de précision et d'exactitude, de quelque chose, mais encore assez significative pour être utile. Bien qu'une approximation soit le plus souvent effectuée sur les nombres, elle est également fréquemment appliquée à des objets tels que des fonctions mathématiques, des formes géométriques, et des lois physiques.

Des approximations peuvent être employées lorsqu'un manque d'information nous empêche d'utiliser des représentations exactes. Par exemple, nous devons déterminer la vitesse moyenne d'un véhicule et nous ne connaissons pas sa vitesse instantanée mais seulement sa vitesse au départ et à l'arrivée. Par ailleurs, même lorsque la représentation exacte est connue, il peut être préférable d'employer une approximation qui simplifie l'analyse sans une trop grande perte d'exactitude.

Par exemple, les physiciens rapprochent souvent la forme de la Terre à celle d'une sphère, même si des représentations plus précises sont possibles. En effet, de nombreux phénomènes physiques, comme par exemple la pesanteur, sont plus faciles à étudier en considérant une sphère plutôt que des formes moins régulières.

Le type d'approximation utilisé dépend de l'information disponible, du degré d'exactitude exigé, de la sensibilité du problème à ses données, et du gain de temps et d'effort qui peut être réalisé par une approximation.

En science

La méthode scientifique est appliquée avec une constante interaction entre les lois scientifiques (théorie) et les mesures empiriques, qui sont constamment comparées les unes aux autres.

L'approximation se rapporte également à l'utilisation d'un processus plus simple. Ce modèle est employé pour faciliter des prévisions. En philosophie des sciences, il est souvent admis que les mesures empiriques ne sont rien de plus que des approximations; et elles ne représentent pas parfaitement les grandeurs mesurées. En histoire des sciences, il apparaît que les lois scientifiques généralement considérées comme vraies à une période de l'histoire deviennent plus tard de simples approximations d'un certain système de lois plus profondes.

À chaque fois qu'un nouveau système de lois est proposé, il est exigé que dans des situations limites dans lesquelles les anciennes lois étaient expérimentées, les nouvelles lois restent presque identiques aux anciennes, aux incertitudes près des mesures plus anciennes. C'est ce qui s'appelle le principe de correspondance.

En mathématiques

En mathématiques, le terme « approximation » peut renvoyer à :

Voir aussi

Wiktprintable without text.svg

Voir « approximation » sur le Wiktionnaire.

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Approximation ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”