- Soustraire
-
Soustraction
La soustraction est l'une des opérations basiques de l'arithmétique. La soustraction combine deux ou plusieurs grandeurs du même type, appelées opérandes, pour donner un seul nombre, appelé la différence.
- Soustraire signifie diminuer en comptant.
- Soustraire b de a (calculer a − b) c'est trouver le nombre qui complèterait b pour donner a, c'est-à-dire le nombre d tel que b + d = a
Le signe de soustraction est le symbole « − ». Par exemple : on lit 3 − 2 = 1 comme « trois moins deux font un ».
Définition générale
Soit (G, +) un groupe additif. On définit une nouvelle loi de composition interne dans G, appelée « soustraction » et notée « − » par :
La soustraction est anticommutative.
Cas particulier des nombres
Ici nous travaillons dans ( , + )~ , le groupe additif des nombres entiers relatifs .
Formellement, la soustraction est une loi de composition interne sur un ensemble, notée - à condition toutefois que la soustraction soit toujours définie ( ce qui n'est, par exemple, pas le cas dans l'ensemble des entiers naturels ). Cette loi de composition interne (quand elle existe) n'est cependant pas très intéressante car- elle n'est pas commutative. En effet a − b et b − a sont en général différents
- elle n'est pas associative. En effet (a − b) − c et a − (b − c) sont en général différents
- elle ne possède pas d'élément neutre. En effet, le seul élément neutre possible serait 0 et on a bien
-
- a − 0 = a, mais en général
- 0 − a est différent de a.
C'est la raison pour laquelle on préfère considérer une soustraction comme l'ajout (somme) de l'opposé à condition évidemment que cet opposé existe ( ce n'est pas toujours le cas dans ).
- L'opposé de a est le nombre noté (−a) qui, ajouté à a, donne 0 : a + (−a) = 0
- a − b peut alors s'écrire a + (−b)
Lorsqu’elle est appliquée sur une série comme en algorithmique c’est un décrément.
Voir aussi
- signes plus « + » et moins « - »
- signe plus ou moins « ± »
- soustraction fiscale
- Soustraction en calcul horaire
- Portail des mathématiques
Catégories : Arithmétique élémentaire | Algèbre | Opération
Wikimedia Foundation. 2010.