- Implication (logique)
-
En logique classique, l'expression « une proposition P implique logiquement une proposition Q » signifie « la proposition ¬P ∨ Q est vraie ». Formellement cela s'écrit P ⇒ Q.
En logique intuitionniste, P ⇒ Q signifie que si l'on a une démonstration de P alors on a une démonstration de Q.
Le symbole « ⇒ » s’appelle connecteur d’implication. « P ⇒ Q » s’appelle une implication logique.
Sommaire
Propriétés
La table de vérité[1] de l’implication est donnée par le tableau :
P Q ¬P P ⇒ Q vrai vrai faux vrai vrai faux faux faux faux vrai vrai vrai faux faux vrai vrai
Cette table de vérité indique notamment que : soient deux propositions P et Q telles que P soit fausse, et Q quelconque (i.e. : vraie ou fausse), alors la proposition "P implique Q" est toujours vraie (cf. table de vérité). Cette propriété faisant partie de la définition de l'implication ne peut être démontrée, néanmoins il est possible de la justifier. En effet, en posant non-P=S et non-Q=R, alors P implique Q équivaut à R implique S, et la contraposée de la propriété supra devient : "soient deux proposition R et S telles que S soit vraie, et R quelconque (i.e. : vraie ou fausse), alors la proposition "R implique S" est toujours vraie. Ceci provient simplement du fait que si S est vraie, alors "si R est vraie, alors S est vraie" est vraie aussi (de fait, puisque S est vraie de toute façon, elle l'est a fortiori si R est vraie), ce qui est exactement "R implique S". La "re-contra-position" de cette proposition nous dit que si une proposition P est fausse, alors quelle que soit la proposition Q, "P implique Q" est toujours vraie.- Exemple : montrons alors que l'ensemble vide ∅ est inclus dans tout ensemble E. Dire que ∅⊂E équivaut à dire que quel que soit x∈∅, x∈E, or quel que soit x, par définition de ∅, x∉∅, donc la première proposition "x∈∅" est fausse, et en appliquant le résultat sur les implications logiques justifié ci-dessus, le résultat - et ce quel qu'il soit - est toujours vrai, i.e. : x∈E. D'où : ∅⊂E.
Soient P, Q et R trois propositions.- (P ⇒ Q) ⇔ (¬P ∨ Q) (définition)
- (P ⇒ Q) ∧ (Q ⇒ P) s'écrit aussi P ⇔ Q ; c'est l'équivalence logique.
- P ⇒ P (l’implication est réflexive)
- ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R) (transitivité de l'implication ou règle du modus barbara)
- (¬(P ⇒ Q)) ⇔ (P ∧ ¬Q) (négation d'une implication)
- ((P ⇒ Q) ∧ P) ⇒ Q (règle du modus ponens ou principe du syllogisme)
- ((P ⇒ Q) ∧ ¬Q) ⇒ ¬P (règle du modus tollens)
- (P ⇒ Q) ⇔ (¬Q ⇒ ¬P) (règle de contraposition : une implication est équivalente à sa contraposée)
- (P ⇔ Q) ⇔ ((P ⇒ Q) ∧ (Q ⇒ P)) (loi de réciprocité)
- ((P ∨ Q) ∧ (P ⇒ R) ∧ (Q ⇒ R)) ⇒ R (disjonction des cas)
Non associativité de l'implication
Si l'implication était associative, les formules :
- ((P ⇒ Q) ⇒ R)
- (P ⇒ (Q ⇒ R))
devraient prendre les mêmes valeurs de vérité pour P, Q et R. Or en prenant P fausse, Q vraie et R fausse, on a, d'une part, (P ⇒ Q) ⇒ R fausse et, d'autre part, P ⇒ (Q ⇒ R) vraie.
En effet,
- puisque P est fausse, la proposition P ⇒ Q est vraie et puisque R est fausse, la proposition (P ⇒ Q) ⇒ R est fausse ;
- puisque Q est vraie et R est fausse, l’implication (Q ⇒ R) est fausse et puisque P est fausse, l’implication P ⇒ (Q ⇒ R) est vraie.
Différence avec l'équivalence
Voici un exemple de relation d'implication : « il fait beau » ⇒ « je suis heureux ». Cette proposition est vraie si je suis toujours heureux quand il fait beau.
À ne pas confondre avec la relation d'équivalence qui elle implique que je ne sois heureux QUE lorsqu'il fait beau. Cette confusion est à l'origine du sophisme de l'affirmation du conséquent.
- La relation d'implication représente le SI (⇒) une condition suffisante dans un sens, une condition nécessaire dans l'autre : dans A ⇒ B, A est une condition suffisante de B, et B est une condition nécessaire de A
— et — - la relation d'équivalence représente le SI ET SEULEMENT SI (⇔), une condition nécessaire et suffisante ;
A ⇔ B équivaut à (A ⇒ B) ET (B ⇒ A)
voir aussi : Propriété contraposée
Implication et causalité
En dépit de sa notation (⇒) qui pourrait laisser suggérer une relation de cause à effet, l'implication logique n'a pas, en logique classique, de caractère séquentiel comme l'ont une cause et un effet. Le temps ne joue pas de rôle et il faut donc le définir explicitement si l'on veut qu'il joue un rôle (voir logique temporelle). En revanche, c'est pour intégrer ce genre de préoccupation que les logiciens ont introduit des logiques constructives, comme la logique intuitionniste ou la logique linéaire.
Divers
La table de vérité de l'implication était connue dès la Grèce antique, notamment par les stoïciens : « Du vrai suit le vrai... Du faux suit le faux... Du faux suit le vrai... Mais du vrai, le faux ne peut s'ensuivre »[2].
Notes et références
- donc en logique classique.
- Diogène Laërce, Vies, doctrines et sentences des philosophes illustres, livre VII, 83
Voir aussi
Wikimedia Foundation. 2010.