Rayon beta

Rayon beta

Radioactivité β

La radioactivité bêta ou émission bêta (symbole β) est un type de désintégration radioactive dans laquelle une particule bêta (un électron ou un positron) est émise. On parle de désintégration bêta moins-) (basse énergie) ou bêta plus+) (haute énergie) selon que c'est un électron (particule chargée négativement) ou un positron (particule chargée positivement) qui est émis.

Existence du neutrino

La distribution de l'énergie des particules béta, pour un type de désintégration donné, suit une loi de probabilité (contrairement au rayonnement alpha). L'énergie indiquée dans les tables pour les désintégration béta est l'énergie maximale (sauf indication contraire). L'énergie moyenne de la particule béta est à peu près 40% de cette énergie maximale.

C'est l'étude de la désintégration bêta qui amena à postuler l'existence du neutrino. En 1931, Wolfgang Pauli proposa que l'énergie « manquante » était emportée par une autre particule, non encore découverte : le neutrino.

Voici ce que permet d'expliquer la présence du neutrino :

  • Le spectre d'énergie d'émission des particules bêta est continu. Ceci s'explique facilement si l'énergie se partage entre trois corps.
  • La quantité de mouvement doit être conservée, or du fait d'un système à trois corps, la particule bêta ne part pas de façon opposée au noyau.
  • Le neutrino permet de conserver le nombre leptonique : la création d'un lepton s'accompagne de celle d'un anti-lepton (paires électron/anti-neutrino électronique ; positron/neutrino électronique).

Le problème fut analysé de façon plus détaillée par Enrico Fermi, mais il fallut attendre 1956 pour les premières observations expérimentales de neutrinos.

Désintégration β-

Un neutron est converti en proton par l'intermédiaire de la force nucléaire faible et une particule β- (un électron) et un anti-neutrino sont émis :

n ~\rightarrow~ p+e^-+\bar{\nu}_e

En fait, le neutron n'est pas une particule élémentaire mais est composé d'un quark up et de deux quarks down (udd). C'est un de ses quarks down qui interagit dans la radioactivité β, en se transformant en quark up, formant alors un proton (uud). Au niveau le plus fondamental, l'interaction faible change la saveur d'un simple quark :

d ~\rightarrow~ u + W^-

qui est suivi immédiatement par la désintégration du W  :

W^- ~\rightarrow~ e^- + \bar{\nu}_e

Le spectre d’énergie (nombre de particules émises en fonction de leur énergie cinétique) des β- (électrons) est continu en raison du partage de l'énergie entre les trois corps. Il n'y a pas d'énergie minimale.

La réaction est énergétiquement possible à la seule condition que le noyau atomique fils soit moins lourd que le noyau père.

Exemple d'une réaction β- pour le tritium (3H+) qui se transforme en hélium 3 (3He2+) :

{}^3\hbox{H}^+\;\to\;^3\hbox{He}^{2+}\;+\;e^-+\bar{\nu}_e

Exemple d’une réaction β- pour l’isotope radioactif cobalt 60 (60Co) qui se transforme en nickel 60 (60Ni+) stable :

{}^{60}\hbox{Co}\;\to\;^{60}\hbox{Ni}^+\;+\;e^-+\bar{\nu}_e

On note dans cet exemple que l'ion nickel produit, échappe aux orbitales cristallines habituelles, surtout si le cobalt était sous forme cristalline, où l'atome de nickel va devoir se réarranger en captant des électrons voisins. Comme l'électron bêta émis se déplace dans le cristal en provoquant des ionisations sur son parcours, les orbitales des autres atomes du cristal sont réarrangées le long de son parcours. L'électron bêta peut être finalement capté par le cristal lui-même sans pouvoir s'en échapper, cédant alors toute son énergie cinétique au cristal, sous forme de chaleur.

Comme le spectre d'énergie d'émission est continu, nombre de désintégrations bêta se produisant au cœur d'un cristal métallique de cobalt 60 ne s’en échappent pas, et on ne détecte éventuellement à l'extérieur du cristal que les neutrinos émis (qui sont très difficiles à capter et à détecter) ou des électrons très ralentis le long de leur parcours. Mais l'ion nickel produit par la désintégration va aussi entrer en collision avec les atomes voisins du cristal et provoquer une onde de choc se propageant dans tout le cristal (le cobalt à la surface du cristal peut se sublimer). Par contre, près de la surface du cristal, on détectera la moitié des émissions d'électrons bêta.

Par contre, si le neutrino est émis avec une énergie faible, l'électron bêta et l'ion nickel vont être propulsés à haute vitesse dans des directions quasi-opposées, le premier traversant facilement tout le cristal, et l'ion frappant fortement les atomes cristallins voisins : l'électron est émis alors d'un côté du cristal, et on observe une sublimation de cobalt gazeux de l'autre côté du cristal, sublimation amplifiée par la température. Sur une source très enrichie et jeune de cobalt 60, de nombreuses désintégrations ont lieu, et le cristal émet en continu un mélange de cobalt 60 gazeux (encore radioactif), de neutrinos et d'électrons bêta dont certains possèdent des énergies très importantes.

Désintégration β+

Un proton est converti en neutron par l'intermédiaire de la force nucléaire faible et une particule β+ (un positron) et un neutrino sont émis:

p ~\rightarrow~ n+e^++{\nu}_e

Le spectre d'énergie [nombre de particules émises en fonction de leur énergie cinétique] des β+ (positrons) est continu du au partage de l'énergie entre les trois corps. Nous remarquons cependant une vitesse minimale des positrons. Celle-ci est due à la répulsion coulombienne de ce dernier avec le noyau.

Cette réaction ne peut avoir lieu que si la masse du noyau fils additionnée de deux fois la masse de l'électron est inférieure à celle du noyau père.

Exemple d'une réaction β+ pour le fluor qui se transforme en oxygène :


{}^{18}\hbox{F}\;\to\;^{18}\hbox{O}\;+\;\mathrm{e}^++{\nu}_e


  • Portail de la physique Portail de la physique
Ce document provient de « Radioactivit%C3%A9 %CE%B2 ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Rayon beta de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Rayon Bêta — Particule β particule bêta Une particule bêta est issue d une désintégration bêta. Il s agit d un électron dans le cas d une désintégration de type β et elle sera alors accompagnée d un anti neutrino électronique. Cette désintégration est… …   Wikipédia en Français

  • Rayon bêta — Particule β particule bêta Une particule bêta est issue d une désintégration bêta. Il s agit d un électron dans le cas d une désintégration de type β et elle sera alors accompagnée d un anti neutrino électronique. Cette désintégration est… …   Wikipédia en Français

  • Beta Aur — Beta Aurigae Beta Aurigae A / B / C (β Aur / β Aurigae) Données d observation (Époque J2000.0) Ascension droite 05h 59m 31.7s Déclinaison +44° 56′ 51″ Constellation Cocher Magnitude appa …   Wikipédia en Français

  • Beta Aurigae — A / B / C (β Aur / β Aurigae) Données d observation (Époque J2000.0) Ascension droite 05h 59m 31.7s Déclinaison +44° 56′ 51″ Constellation Cocher Magnitude apparente …   Wikipédia en Français

  • Beta Cet — Beta Ceti Beta Ceti (β Cet / β Ceti) Données d observation (Époque J2000.0) Ascension droite 00h 43m 35.2s Déclinaison 17° 59′ 12″ Constellation Baleine Magnitude apparente …   Wikipédia en Français

  • Rayon Gamma — Pour les articles homonymes, voir gamma (homonymie). Les rayons gamma sont produits par des processus nucléaires énergétiques au cœur des noyaux atomiques …   Wikipédia en Français

  • Beta Ceti — (β Cet / β Ceti) Données d observation (Époque J2000.0) Ascension droite 00h 43m 35.2s Déclinaison 17° 59′ 12″ Constellation Baleine Magnitude apparente …   Wikipédia en Français

  • Beta Pictoris — vue du disque de poussières (Hubble) Données d observation (Époque J2000.0) Ascension droite 05h 47m 17,1s …   Wikipédia en Français

  • Beta Lyrae — Sheliak Données d observation (Époque J2000.0) Ascension droite 18h 50m 04.8s Déclinaison +33° 21′ 46″ Constellation Lyre Magnitude apparente …   Wikipédia en Français

  • Beta Regio — Theia Mons au sud et Rhea Mons au nord, reliés par Devana Chasma, forment le cœur de Beta Regio. Géographie et géologie Coordonnées 25,3° N • 282,8 E …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”