Radicand

Radicand

Racine d'un nombre

En mathématiques, une racine n-ième d'un nombre a est un nombre b tel que bn = a, où n est un entier naturel non nul,

Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre a peut être 0, 1, 2 ou n.

Pour un nombre réel a positif, il existe un unique réel b positif tel que bn = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a ) et se note \sqrt[n]{a} avec le symbole radical (\sqrt{}) ou a^{\frac 1 n}. La racine la plus connue est la racine carrée d'un réel. Cette définition se généralise pour a négatif et b négatif à condition que n soit impair.

Le terme de racine d'un nombre ne doit pas être confondu avec celui de racine d'un polynôme qui désigne la (ou les) valeur(s) où le polynôme s'annule.

Sommaire

Racine d'un réel

Racine carrée

Article détaillé : Racine carrée.

Pour tout réel r strictement positif, l'équation x2 = r admet deux solutions réelles opposées, et lorsque r = 0, l'équation x2 = 0 admet comme seule solution 0.

La racine carrée d'un réel r positif (r\geq 0) est par définition l'unique solution réelle positive de l'équation

x2r = 0 d'inconnue x.

Elle est notée \sqrt{r} .

Exemples

Racine cubique

Article détaillé : Racine cubique.

La racine cubique d'un réel r quelconque est l'unique racine réelle de l'équation

x3r = 0 d'inconnue x.

Elle est notée \sqrt[3]{r} .

Exemple:

  • On a \sqrt[3]{-8}=-2. En effet − 2 est le seul nombre réel dont la puissance troisième est égale à − 8.

Racine n-ième d'un nombre réel positif

Pour tout entier naturel non nul n, l'application x\mapsto x^n est une bijection de \mathbb{R}_{+} sur \mathbb{R}_{+} et donc pour tout réel r positif, l'équation xn = r admet une unique solution dans \mathbb{R}_{+}.

La racine énième (ou racine n-ième) d'un réel r positif (r ≥ 0, n > 0) est l'unique solution réelle positive de l'équation

xnr = 0 d'inconnue x.

Elle est notée \sqrt[n]{r}.

Remarquons que la racine n-ième de r est aussi l'unique racine positive du polynôme Xnr.

Lorsque n est pair, l'équation

xnr = 0 d'inconnue x

possède deux solutions qui sont \sqrt[n]{r} et -\sqrt[n]{r}.

Lorsque n est impair, l'équation

xnr = 0 d'inconnue x

ne possède qu'une seule solution \sqrt[n]{r}.

Racine n-ième d'un nombre réel négatif

Le traitement des racines de nombres négatifs n'est pas uniforme. Par exemple, il n'existe pas de racine carrée réelle de -1 puisque pour tout réel x, x2 + 1 > 0, mais la racine cubique de -27 existe et est égale à -3.

Pour tout entier naturel impair n, l'application x\mapsto x^n est une bijection de \mathbb{R} sur \mathbb{R} donc tout nombre réel admet exactement une racine n-ième.

Pour tout entier naturel impair n, la racine énième (ou racine n-ième) d'un réel r quelconque est l'unique solution réelle de l'équation

xnr = 0

d'inconnue x.

Il s'ensuit que les racines d'ordres impairs de nombres réels négatifs sont négatives.

Remarquons que pour les entiers naturels impairs n et pour tout réel a, on a

\sqrt[n]{-a} =-\sqrt[n]{a}.

Le besoin de travailler avec des racines de nombres négatifs a conduit à la mise en place des nombres complexes, mais il y a également dans le domaine des nombres complexes des restrictions pour les racines. Voir ci-dessous.

Les propriétés des racines

Les règles de calcul des racines qui découlent des propriétés des puissances.

Pour les nombres strictement positifs, a et b, on a les règles de calcul suivantes:

  • \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}
  • \sqrt[m]{\sqrt[n]{a}} = \sqrt[m \cdot n]{a}
  • \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}
  • \left(\sqrt[n]{a} \right)^m = \sqrt[n]{a^m}

Dans le cas des nombres négatifs, ces règles de calcul ne pourront être appliquées que si m et n sont des nombres impairs. Dans le cas des nombres complexes, elles sont à éviter.

Exposant fractionnaire

Dans l'ensemble des réels strictement positifs, le nombre qui, élevé à la puissance n, donne a est noté \sqrt[n]{a}. L'idée est de noter ce nombre comme une puissance de a, quitte à prendre un exposant non entier. Il s'agissait donc de trouver un exposant p tel que \left(a^p\right)^n = a. En utilisant des opérations connues sur des exposants entiers que l'on généraliserait à des exposants non entiers, on obtiendrait apn = a1, soit pn = 1 et p=\frac 1n.

Ainsi on peut noter la racine carrée de a , \sqrt a ou a^{\frac 12}, la racine cubique de a , \sqrt[3] a ou a^{\frac 13} et la racine n-ième de a , \sqrt[n] a ou a^{\frac 1n}.

Cette extension des valeurs possibles pour l'exposant est dû au travail de Newton et Leibniz[1]. On peut poursuivre le travail en observant que

\sqrt[n]{a^m} = \left(\sqrt[n] a\right)^m= \left(a^m\right)^{\frac 1n}= \left(a^{\frac 1n}\right)^m = a^{\frac mn}.

et vérifier que cette notation est compatible avec les propriétés déjà connues sur les exposants entiers.

C'est chez Newton que l'on voit apparaître pour la première fois un exposant fractionnaire. Mais Newton et Leibniz ne s'arrêteront pas là et se poseront même la question de travailler sur des exposants irrationnels sans être pour autant capables de leur donner un sens. Ce n'est qu'un siècle plus tard que ces notations prendront un sens précis avec la mise en place de la fonction exponentielle et la traduction :

a^{\frac 1n} =\exp\left(\frac 1n\ln a\right) pour tout réel a strictement positif.

Fonction racine n-ième

Racine carré et racine cubique comme réciproques des fonctions carré et cube

Pour tout entier naturel non nul n, l'application x\mapsto x^n est une bijection de \mathbb{R}_{+} sur \mathbb{R}_{+} dont l'application réciproque est la fonction racine n-ième. Il est donc loisible de construire sa représentation graphique, à l'aide de celle de la la fonction puissance par symétrie d'axe d:y = x.

On remarque que cette fonction est continue sur l'intervalle [0;+\infty[ et l'existence à l'origine d'une tangente confondue avec l'axe des y donc d'une non-dérivabilité en 0 ainsi qu'une branche parabolique d'axe (Ox).

Les formules sur la dérivée de la réciproque permettent d'établir que la fonction racine n-ième est dérivable sur l'intervalle ]0; + \infty[ et que sa dérivée est x \mapsto \frac{\sqrt[n] x}{nx}, soit encore, avec l'exposant fractionnaire x \mapsto \frac 1n x^{\frac 1n - 1} montrant ainsi que la formule sur la dérivée d'une fonction puissance entière se généralise à celle d'une puissance inverse.

Développement en série entière

Article détaillé : série entière.

Le radical ou racine peut être représenté par la série :


\sqrt[n]{1+x}=(1+x)^{\frac 1n} = \sum_{k=0}^\infty a_k x^k

 a_k=\frac{\frac 1n\left(\frac 1n - 1\right)\left(\frac 1n - 2\right)\cdots \left(\frac 1n - k+1\right)}{k!}= \frac{\displaystyle\prod_{i=0}^k (1+n-in)}{(1+n)k!n^k}

avec | x | < 1.

Racines d'un complexe

Pour tout entier naturel non nul n, une racine n-ième d'un nombre complexe z est un nombre, qui élevé à la puissance n donne z, c'est-à-dire une solution de l'équation

xn = z

d'inconnue x.

Lorsque z est différent de 0, il existe n racines n-ièmes distinctes de z. En effet, les racines n-ièmes d'un complexe z non nul sont aussi les racines du polynôme Xn − z, qui admet bien n solutions dans l'ensemble des nombres complexes d'après le théorème de d'Alembert-Gauss.

Toutes les racines de n'importe quel nombre, réel ou complexe, peuvent être trouvées avec un simple algorithme. Le nombre doit d'abord être écrit sous la forme ae^{i\varphi} (voir la formule d'Euler). Alors, toutes les racines n-ièmes sont données par :

 e^{(\frac{\varphi+2k\pi}{n})i} \times \sqrt[n]{a}

pour k=0,1,2,\ldots,n-1, où \sqrt[n]{a} représente la racine n-ième principale de a.

Nombres réels positifs

Toutes les solutions complexes de xn = a, autrement dit les racines n-ièmes de a, où a est un nombre réel positif, sont données par l'équation simplifiée :

 e^{2\pi i \frac{k}{n}} \times \sqrt[n]{a}

pour k=0,1,2,\ldots,n-1, où \sqrt[n]{a} représente la racine n-ième principale de a.

Racines de l'unité

Article détaillé : Racine de l'unité.
Article détaillé : Polynôme cyclotomique.

Lorsque z = 1, une telle racine s'appelle une racine n-ième de l'unité, et l'ensemble des racines n-ièmes de l'unité, noté \mathcal U_n, est formé des n racines du polynôme complexe

Xn − 1.

Il s'agit d'un sous-groupe cyclique du groupe multiplicatif des complexes de module 1. Il est formé des éléments \{ 1, e^{i\frac {2\pi}{n}}, e^{i\frac {4\pi}{n}}, \ldots, e^{i\frac {(2n-2)\pi}{n}} \}

On appelle racine n-ième primitive de l'unité tout générateur du groupe cyclique \mathcal U_n. Ces racines primitives sont les éléments e^{i\frac{2k\pi}{n}}k est premier avec n. Leur nombre est égal à \varphi(n)\varphi désigne l'indicatrice d'Euler.

Résolution par radicaux

Il a été une fois conjecturé que toutes les racines de polynômes pouvaient être exprimées en termes de radicaux et d'opérations élémentaires. Ceci n'est pas vrai en général comme l'énonce le théorème d'Abel-Ruffini. Par exemple, les solutions de l'équation

\ x^5=x+1

ne peuvent pas être exprimées en termes de radicaux.

Article détaillé : équation quintique.

Pour résoudre n'importe quelle équation de n-ième degré, voir l'algorithme de recherche de racines.

Racine en typographie

Structure d'une racine.PNG

En typographie, une racine est composée de trois parties : le radical, l'indice et le radicande.

  • Le radical est le symbole de la racine,
  • l'indice est le degré de cette racine,
  • enfin, le radicande est ce qu'il y a sous la racine.

Voir aussi

Bibliographie

  • Mathematische Semesterberichte de Ulrich Felgner. Vol. 52, N° 1, 2005, Springer, p. 1-7, ISSN 0720-728X (Au sujet de l'origine du signe de racine) (de)
  • Mathematik leicht gemacht de Hans Kreul, Harald Ziebarth. Les mathématiques faciles, 6ème édition 2006 Verlag Harri Deutsch. Le chapitre complet sur la racine avec des explications, des exemples et des exercices disponible gratuitement en ligne. ISBN 978-3-8171-1786-4. (de)

Notes et références

  1. Michel Serfati, La révolution symbolique, Chap XI, l'exponentielle après Descartes
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Racine d%27un nombre ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Radicand de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • radicand — [rad′i kand΄] n. [< L radicandum, neut. ger. of radicare, to take root < radix,ROOT1] the quantity under a radical sign …   English World dictionary

  • Radicand — A radicand is a mathematical expression whose root is being considered in a radical. In the expression:sqrt [n] {ab+2} ab + 2 is the radicand. The radicand is the number or expression underneath the radical sign …   Wikipedia

  • radicand — noun Etymology: Latin radicandum, neuter of radicandus, gerundive of radicari Date: 1889 the quantity under a radical sign …   New Collegiate Dictionary

  • radicand — /rad i kand , rad i kand /, n. Math. the quantity under a radical sign. [1895 1900; < L radicandum, neut. gerundive of radicare, deriv. of radix ROOT1] * * * …   Universalium

  • radicand — noun The number or expression whose square root or other root is being considered; e.g. The 3 in …   Wiktionary

  • radicand — ra|di|cand Mot Agut Nom masculí …   Diccionari Català-Català

  • radicand — rad·i·cand …   English syllables

  • radicand — rad•i•cand [[t]ˈræd ɪˌkænd, ˌræd ɪˈkænd[/t]] n. Math. math. the quantity under a radical sign • Etymology: 1895–1900; < L rādīcandum, neut. gerundive of rādīcāre …   From formal English to slang

  • radicand — ˈradəˌkand, ˌ ̷ ̷ ̷ ̷ˈ ̷ ̷ noun ( s) Etymology: Latin radicandum, neuter of radicandus, gerundive of radicare, radicari to take root : the quantity under a radical sign …   Useful english dictionary

  • Shifting nth-root algorithm — The shifting nth root algorithm is an algorithm for extracting the n th root of a positive real number which proceeds iteratively by shifting in n digits of the radicand, starting with the most significant, and produces one digit of the root on… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”