- Quadrature de la parabole
-
La quadrature de la parabole est le calcul de l'aire d'un segment de parabole, surface délimitée par une parabole et une droite. Elle est réalisée par Archimède (-287 à -212), d'une part en utilisant la méthode d'exhaustion d'Eudoxe (-406 à -355) en approximant la surface du segment par des triangles, d'autre part par une méthode originale par pesée, figurant dans un palimpseste découvert seulement en 1906.
C'est un des premiers calculs d'intégration en mathématiques. Il apparaît dans une lettre d'Archimède à Dositée.
Sommaire
Calcul moderne
Soit , l'équation de la parabole.
L'aire de la surface située sous l'arc projeté en abscisse sur l'intervalle [0,x0] est par intégration:
avec
Calcul d'Archimède par la méthode d'exhaustion
Principe
En mathématiques grecques, les calculs d'aire se font essentiellement par approximation au moyen d'une méthode dite par exhaustion, reposant sur un double raisonnement par l'absurde. On approche la surface du segment de parabole par des triangles intérieurs à la parabole, cette approximation pouvant être rendue aussi précise que désirée.
Développement
Archimède cherche à calculer l'aire P du triangle curviligne entre les points d'abscisse a et d'abscisse b, l'axe de la parabole étant l'axe des ordonnées. Il dessine alors un triangle passant par les points d'abscisse a, d'abscisse b et d'abscisse . Il décide donc d'approcher P par l'aire S de ce grand triangle. Puis il recommence dans les petits triangles curvilignes laissés pour compte.
Il démontre que l'aire de chaque petit triangle est égal au huitième de l'aire du grand triangle, en démontrant que la distance horizontale a été divisée par deux, tandis que la flèche a été divisée par 4. Il peut alors approcher P par l'aire du grand triangle et des deux petits : , puis, continuant ainsi, il approche l'aire de la parabole par Sn.
- .
On sait, dès cette époque, que Sn peut s'écrire
mais on ne sait pas passer à la limite. On sait seulement utiliser le principe d'exhaustion, en s'appuyant sur l'axiome d'Archimède :
Axiome d'Archimède : étant données deux grandeurs inégales, si de la plus grande on retranche plus que sa moitié puis du reste ainsi obtenu on retranche encore plus que sa moitié et si l'on continue toujours ainsi, nous aboutirons finalement à une grandeur inférieure à la plus petite des grandeurs données.
Archimède envisage alors 3 possibilités : ou bien P est plus grande que , ou bien P est plus petite que , ou bien P égale
- Si P était plus grande que
-
- Il démontre que la différence entre P et Sn peut être rendue aussi petite que l'on souhaite. En effet, à l'aire de la parabole, on retranche l'aire du triangle qui représente plus de la moitié de l'aire de la parabole car l'aire du triangle vaut exactement la moitié de l'aire du parallélogramme dessiné, aire plus grande que l'aire de la parabole. Et ainsi de suite à chaque étape. Il peut donc rendre P − Sn plus petite que . Ce qui voudrait dire que Sn serait supérieure à . Impossible d'après l'expression de Sn
- Si P est inférieure à
-
- Selon le même principe d'exhaustion, on peut rendre la différence aussi petite que l'on veut, puisque à chaque étape on retranche les 3/4 de ce qui reste. On pourrait donc la prendre plus petite que . Ce qui voudrait dire que Sn serait plus grande que P. Impossible puisque les triangles sont intérieurs au segment de parabole.
Les deux cas étant éliminés, il ne reste plus que le cas
Il est intéressant de voir que le terme "aussi petite qu'on le souhaite" est très proche de la notion de limite qu'Archimède ne connaît pas. Il est donc contraint de raisonner par l'absurde pour prouver son égalité.
Quadrature par la méthode des pesées
Archimède propose dans le même ouvrage une présentation mécanique de la quadrature qui démontre son génie mécanique . Cette démarche figure dans un unique manuscrit du texte d'Archimède, découvert dans un palimpseste en 1906.
Il décide de peser la parabole par un système de levier.
La figure présentée ici est une simplification de celle figurant dans l'ouvrage d'Archimède. La droite (AC) est tangente en A à la parabole, le segment [BC] est parallèle à l'axe de la parabole. Le point D se projette, parallèlement à l'axe de la parabole, sur le milieu de [AB].
L'idée est d'équilibrer le triangle ABC, suspendu en son centre de gravité G par une masse placée en A'.
Archimède procède par segment. Le triangle ABC suspendu en Hg peut être remplacé par une multitude de segments MP suspendus en H. Archimède a déjà démontré (traité sur les paraboles) que MN est à MP ce que BM est à BA. On dirait maintenant :
- . (1)
Grâce au théorème de Thalès, on a aussi l'égalité
- (2)
Donc
Puis :
Le segment [MN] placé en A' équilibre donc le segment [MP] placé en H.
Segment par segment, il équilibre donc le triangle ABC placé en Hg par la portion de parabole placée en A' . Donc
- Aire de la parabole OA' = Aire du triangle OHg.
Comme alors
- Aire de la parabole = aire de ABC.
Enfin, dans le même traité sur les paraboles, Archimède a déjà démontré que l'aire de ABC vaut 4 fois l'aire de ABD.
L'aire de la parabole vaut donc de l'aire du triangle ABD
Voir aussi
- La quadrature de la parabole pour le traité d'Archimède
Sources
- Histoire des mathématiques, routes et dédales, Dahan-Dalmédico et Pfeiffer, ed. Point-sciences.
- La démonstration mathématique dans l'histoire, ed. Irem de Lyon
- [PDF]Quadrature de la parabole
- [PDF]Quadrature par la méthode des pesées, séminaire de mathématiques, IUFM de La Réunion.
Wikimedia Foundation. 2010.