Point impropre

Point impropre

Géométrie arguésienne

En géométrie synthétique, la géométrie arguésienne est une « construction » simple (due à Desargues), basée sur l'introduction d'éléments impropres, pour faire entrer la géométrie affine[1] (et le parallélisme) dans le moule de la géométrie projective.

Sommaire

Introduction

Le premier axiome de la géométrie projective énonce (entre autres) :

Deux droites coplanaires[2] ont un point commun.

En revanche, l'axiome du parallélisme de la géométrie affine (une formulation simplifiée de cinquième postulat de la géométrie d'Euclide) est :

Par un point extérieur à une droite, il passe toujours une parallèle à cette droite, et une seule.

Il semble donc que géométrie projective et géométrie affine sont inconciliables puisque par définition.

Deux droites sont parallèles lorsqu'elles sont coplanaires et sans intersection.

En réalité, il n'en est rien.

Description

La géométrie arguésienne est un moyen de concilier géométrie affine et géométrie projective :

Parallèles

Desargues a redéfini la notion de parallélisme en introduisant les éléments impropres[3] : point impropre (assimilable au point de fuite), droite ou plan impropres. Il va de soi que les éléments d'une forme impropre sont impropres. La géométrie arguésienne se caractérise donc par la distinction d'éléments impropres. La définition du parallélisme devient :

Deux droites, deux plans, ou encore une droite et un plan sont parallèles lorsque leur intersection est impropre.

En géométrie projective (en géométrie elliptique également), il n'y pas de points impropres donc pas de parallélisme. En revanche, on y construit de nouvelles géométries et tout d'abord la géométrie affine en deux étapes fort simples :

  1. on définit des points impropres
  2. on les supprime

La caractérisation des éléments impropres en géométrie affine est :

Les éléments impropres appartiennent à un unique plan impropre.

Toute droite (propre) possède un unique point impropre.

L'élimination des points consiste à dire : « on transforme une droite projective en une droite affine en lui ôtant son point impropre. ». On retrouve alors immédiatement l'axiome du parallélisme de la géométrie affine. De plus, le point impropre supprimé est assimilable à la direction de ses droites.

L'on peut également recourir au éléments impropres pour caractériser le parallélisme de la géométrie hyperbolique ; mais cette dernière n'est pas entièrement compatible avec la géométrie projective.


Conclusion

La notion d'élément impropre n'est pas nécessaire à la géométrie projective ; mais sert de "passerelle" entre cette géométrie et la géométrie affine. La suppression des éléments impropres est comparable à une ouverture (au sens topologique) de l'espace. Inversement la géométrie projective s'apparente à une fermeture de la géométrie affine.

De plus la construction arguésienne permet une réécriture[4], une transposition rapide des théorèmes de la géométrie projective (le théorème de Desargues en premier lieu). Paradoxalement, on s'aperçoit vite du caractère simplificateur de la géométrie projective qui nous débarrasse des singularités du parallélisme (appelées « dégénérescences »).

Notes

  1. Cette géométrie est notre géométrie familière (épurée) puisque la géométrie euclidienne est affine.
  2. c'est à dire qu'elles appartiennent à un même plan.
  3. ces éléments sont souvent dits « à l'infini ».
  4. de la même manière que la dualité

Références

  • Paul Rossier, Géométrie synthétique moderne, Vuibert, 1961 
  • Portail de la géométrie Portail de la géométrie
Ce document provient de « G%C3%A9om%C3%A9trie argu%C3%A9sienne ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Point impropre de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Point d’ébullition — Point d ébullition La température la plus élevée que peut atteindre un corps avant de s évaporer, sous forme gazeuse, librement, se nomme le point d ébullition. Cette température se calcule à la pression atmosphérique de 1 atmosphère (101.3 kPa) …   Wikipédia en Français

  • Point d'ébullition — ██████████10  …   Wikipédia en Français

  • Point de vue antisémite — Antisémitisme Antisémitisme Fondamentaux Définitions : Antijudaïsme · Antisémitisme · Judéophobie …   Wikipédia en Français

  • Élement impropre — Géométrie arguésienne En géométrie synthétique, la géométrie arguésienne est une « construction » simple (due à Desargues), basée sur l introduction d éléments impropres, pour faire entrer la géométrie affine[1] (et le parallélisme)… …   Wikipédia en Français

  • Integrale impropre — Intégrale impropre En mathématiques, l intégrale impropre désigne une extension de l intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des… …   Wikipédia en Français

  • Intégrale Impropre — En mathématiques, l intégrale impropre désigne une extension de l intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou… …   Wikipédia en Français

  • Intégrale impropre — En mathématiques, l intégrale impropre désigne une extension de l intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou… …   Wikipédia en Français

  • Le Point-du-Jour (Boulogne-Billancourt) — Boulogne Billancourt Pour les articles homonymes, voir Boulogne. 48°50′07″N 2°14′27″E / …   Wikipédia en Français

  • Rotation impropre — Antirotation En géométrie, une antirotation est une sorte d isométrie de l espace en trois dimensions (espace euclidien ou espace vectoriel, suivant le contexte) : c est la composée d une rotation autour d un axe et d une réflexion par… …   Wikipédia en Français

  • Geometrie arguesienne — Géométrie arguésienne En géométrie synthétique, la géométrie arguésienne est une « construction » simple (due à Desargues), basée sur l introduction d éléments impropres, pour faire entrer la géométrie affine[1] (et le parallélisme)… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”