Multiplication de matrices

Multiplication de matrices

Produit matriciel

Le produit matriciel désigne le produit de matrices, initialement appelé la « composition des tableaux »[1]. Cet article montre comment multiplier les matrices.

Sommaire

Produit matriciel ordinaire

Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. Le produit de deux matrices ne peut se définir que si le nombre de colonnes de la première matrice est le même que le nombre de lignes de la deuxième matrice, c'est-à-dire lorsqu'elles sont de type compatible.

Si A = (aij) est une matrice de type (m,n) et B = (bij) est une matrice de type (n,p), alors leur produit, noté AB = (cij) est une matrice de type (m,p) donnée par :

\forall i, j : c_{ij} = \sum_{k=1}^n a_{ik}b_{kj} = a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+ a_{in}b_{nj}

La figure suivante montre comment calculer les coefficients c12 et c33 de la matrice produit AB si A est une matrice de type (3,2), et B est une matrice de type (2,3).

Matrix multiplication diagram.svg

{\color{BrickRed}c_{12}} = \sum_{r=1}^2 a_{1r}b_{r2} = a_{11}b_{12}+a_{12}b_{22}

{\color{NavyBlue}c_{33}} = \sum_{r=1}^2 a_{3r}b_{r3} = a_{31}b_{13}+a_{32}b_{23}

Exemple


  \begin{pmatrix}
     1 & 0 \\ 
     -1 & 3
  \end{pmatrix}
\times 
  \begin{pmatrix} 
    3 & 1 \\ 
    2 & 1 \\ 
      \end{pmatrix}

=
\begin{pmatrix} 
   (1 \times 3+0 \times 2) & (1 \times 1+0 \times 1) \\
   (-1 \times 3+3 \times 2) & (-1 \times 1+3 \times 1) \end{pmatrix}
= 
\begin{pmatrix} 3 & 1 \\ 3 & 2 \end{pmatrix}

Cette notion de multiplication est importante parce que si A et B sont interprétées comme des matrices d'applications linéaires (ce qui est presque toujours le cas), alors la matrice produit AB représente la matrice de la composition des deux applications linéaires, avec celle qui correspond à B qui est appliquée en premier.

En général, la multiplication des matrices n'est pas commutative, c'est-à-dire que AB n'est pas égal à BA.

Multiplication de matrices par bloc

Si l'on considère les matrices M = \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}\right) et N = \left(\begin{smallmatrix} A' & B' \\ C' & D' \end{smallmatrix}\right), où A,A',B,B',C,C' et D,D' sont des matrices vérifiant :

  • Le nombre de colonnes de A et C est égal au nombre de lignes de A' et B'
  • Le nombre de colonnes de B et D est égal au nombre de lignes de C' et D'

on a alors l'égalité

 M  N =  \begin{pmatrix} A  A' + B  C'& A  B' + B  D' \\ C  A' + D  C' & C  B' + D  D' \end{pmatrix}

On remarquera l'analogie entre le produit de matrice par blocs et le produit de deux matrices carrées d'ordre 2.

N.B. : On ne définit pas ainsi une nouvelle forme de multiplication de matrices. Cela correspond simplement à une méthode de calcul du produit matriciel ordinaire pouvant simplifier les calculs.

Produit d'Hadamard

Pour deux matrices de même type, nous avons le produit d'Hadamard ou produit composante par composante. Le produit d'Hadamard de deux matrices A = (aij) et B = (bij) de type (m,n), noté A · B = (cij), est une matrice de type (m,n) donnée par

c_{ij}=a_{ij}\times b_{ij}

Par exemple :


  \begin{pmatrix}
    1 & 3 & 2 \\ 
    1 & 0 & 0 \\ 
    1 & 2 & 2
  \end{pmatrix}
\cdot
  \begin{pmatrix} 
    0 & 0 & 2 \\ 
    7 & 5 & 0 \\ 
    2 & 1 & 1
  \end{pmatrix}
=
  \begin{pmatrix} 
    1 \times 0 & 3 \times 0 & 2 \times 2 \\ 
    1 \times 7 & 0 \times 5 & 0 \times 0 \\ 
    1 \times 2 & 2 \times 1 & 2 \times 1
  \end{pmatrix}
=
  \begin{pmatrix} 
    0 & 0 & 4 \\ 
    7 & 0 & 0 \\ 
    2 & 2 & 2
  \end{pmatrix}

Remarquons que le produit d'Hadamard est une sous-matrice du produit de Kronecker (voir ci-dessous). Le produit d'Hadamard est étudié par les théoriciens des matrices, mais n'est pas du tout utilisé par les algébristes linéaires.

Produit de Kronecker

Article détaillé : Produit de Kronecker.

Pour deux matrices arbitraires A = (aij) et B, nous avons le produit tensoriel ou produit de Kronecker AB qui est défini par


  \begin{pmatrix} 
    a_{11}B & a_{12}B & \cdots & a_{1n}B \\ 
    \vdots & \vdots & \cdots & \vdots \\ 
    a_{n1}B & a_{n2}B & \cdots & a_{mn}B
  \end{pmatrix}

Remarquons que si A est une matrice de type (m,n) et B est une matrice de type (p,r) alors AB est une matrice de type (mp,nr). À nouveau cette multiplication n'est pas commutative.

Par exemple


  \begin{pmatrix} 
    1 & 2 \\ 
    3 & 1 \\ 
  \end{pmatrix}
\otimes
  \begin{pmatrix} 
    0 & 3 \\ 
    2 & 1 \\ 
  \end{pmatrix}
=
  \begin{pmatrix} 
    1\times 0 & 1\times 3 & 2\times 0 & 2\times 3 \\ 
    1\times 2 & 1\times 1 & 2\times 2 & 2\times 1 \\ 
    3\times 0 & 3\times 3 & 1\times 0 & 1\times 3 \\ 
    3\times 2 & 3\times 1 & 1\times 2 & 1\times 1 \\ 
  \end{pmatrix}
=
  \begin{pmatrix} 
    0 & 3 & 0 & 6 \\ 
    2 & 1 & 4 & 2 \\
    0 & 9 & 0 & 3 \\
    6 & 3 & 2 & 1
  \end{pmatrix}
.

Si A et B sont les matrices d'applications linéaires V1W1 et V2W2, respectivement, alors AB représente le produit tensoriel des deux applications, V1V2W1W2.

Propriétés communes

Les trois multiplications matricielles précédentes sont associatives

A \times (B \times C) = (A \times B) \times C,

distributives par rapport à l'addition :

A \times (B + C) = A \times B + A \times C
(A + B) \times C = A \times C + B \times C

et compatibles avec la multiplication par un scalaire :

c(A \times B) = (cA) \times B = A \times (cB)

Multiplication par un scalaire

La multiplication par un scalaire r d'une matrice A = (aij) donne le produit

rA = (raij).

Si nous travaillons avec des matrices sur un anneau, alors la multiplication par un scalaire est parfois appelée la multiplication à gauche tandis que la multiplication à droite est définie par :

Ar = (aijr).

Quand l'anneau fondamental est commutatif, par exemple, le corps des réels ou des complexes, les deux multiplications sont identiques.

Cependant, si l'anneau n'est pas commutatif, tel que celui des quaternions, alors ils peuvent être différents. Par exemple


  i\begin{pmatrix} 
    i & 0 \\ 
    0 & j \\ 
  \end{pmatrix}
= \begin{pmatrix}
    -1 & 0 \\
     0 & k \\
  \end{pmatrix}
\ne \begin{pmatrix}
    -1 & 0 \\
    0 & -k \\
  \end{pmatrix}
= \begin{pmatrix}
    i & 0 \\
    0 & j \\
  \end{pmatrix}i

Voir aussi

Articles connexes

Notes et références

  1. Alain Connes, Triangle de pensées, Edition Odile Jacob, p.72.

Lien externe

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Produit matriciel ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Multiplication de matrices de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Multiplication des matrices — Produit matriciel Le produit matriciel désigne le produit de matrices, initialement appelé la « composition des tableaux »[1]. Cet article montre comment multiplier les matrices. Sommaire 1 Produit matriciel ordinaire 1.1 Exemple …   Wikipédia en Français

  • Matrices de rotation — Matrice de rotation En mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation est une matrice orthogonale de déterminant 1. Le nom est dû au fait qu une matrice de rotation n×n correspond à une rotation géométrique autour …   Wikipédia en Français

  • Multiplication matricielle — Produit matriciel Le produit matriciel désigne le produit de matrices, initialement appelé la « composition des tableaux »[1]. Cet article montre comment multiplier les matrices. Sommaire 1 Produit matriciel ordinaire 1.1 Exemple …   Wikipédia en Français

  • MATRICES (TRAITEMENT NUMÉRIQUE DES) — Nous désignons par A une matrice à n lignes et p colonnes. L’élément de la i ième ligne et de la j ième colonne de A est un nombre complexe noté a i , j . Les problèmes de calcul numérique les plus courants liés aux matrices sont la résolution de …   Encyclopédie Universelle

  • multiplication — ► NOUN 1) the process of multiplying. 2) Mathematics the process of combining matrices, vectors, or other quantities under specific rules to obtain their product …   English terms dictionary

  • Multiplication — Multiply redirects here. For other uses, see Multiplication (disambiguation). For methods of computing products, including those of very large numbers, see Multiplication algorithm. Four bags of three marbles gives twelve marbles. There are also… …   Wikipedia

  • Matrices diagonalisables — Matrice diagonalisable En algèbre linéaire, une matrice carrée M d ordre n ( ) à coefficients dans un corps commutatif K, est dite diagonalisable si elle est semblable à une matrice diagonale, c est à dire s il existe une matrice inversible P et… …   Wikipédia en Français

  • Multiplication — Cet article concerne l opération arithmétique. Pour les autres significations, voir Multiplication (homonymie). La multiplication de 4 par 3 donne le même résultat que la multiplication de 3 par 4 La multiplica …   Wikipédia en Français

  • multiplication — noun Etymology: Middle English multiplicacioun, from Anglo French multiplicacion, from Latin multiplication , multiplicatio, from multiplicare to multiply Date: 14th century 1. the act or process of multiplying ; the state of being multiplied 2.… …   New Collegiate Dictionary

  • multiplication — noun 1》 the process of multiplying. 2》 Mathematics the process of combining matrices, vectors, or other quantities under specific rules to obtain their product …   English new terms dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”