Loi du zéro un de Kolmogorov

Loi du zéro un de Kolmogorov

En probabilités, la loi du zéro un de Kolmogorov affirme que certains événements, appelés événements queues[1], soit seront presque sûrement réalisés, soit ne seront presque sûrement pas réalisés. C'est-à-dire que la probablité d'un tel événement vaut 1 ou 0.

Les événements queues se définissent en termes de suites infinies de variables aléatoires. Soit

X_1,X_2,X_3,\dots\,

une suite[2] infinie de variables aléatoires indépendantes. Alors, un événement queue est un événement dont la réalisation est déterminée par la valeur des variables Xi, mais qui est indépendant de toute sous-suite finie de variables Xi.

  • Par exemple, l'événement « la série \sum_{k=1}^\infty X_k converge » est un événement queue.
  • L'événement \sum_{k=1}^\infty X_k > 1 n'est pas un événement queue puisque, par exemple, il n'est pas indépendant de la valeur de X1.
  • Pour une infinité de lancers d'une pièce à pile ou face, le fait qu'une séquence de 100 « faces » consécutives soit réalisée une infinité de fois, est un événement queue.
  • Le paradoxe du singe savant est un exemple d'application de la loi du zéro un.

De façon surprenante, il est parfois aisé de prouver grâce à cette loi qu'un événement a une probabilité dans {0,1}, mais très difficile de déterminer laquelle de ces deux valeurs est la bonne.

Démonstration

L'indépendance des Xk conduit à celle des tribus Un = σ(Xk;k < n) et Tn = σ(Xk;k > = n)

Si nous notons Tq la tribu de queue, on a \forall n, T_q \subset T_n

Ce qui nous assure, pour tout n, l'indépendance de Tq et Un.

Posons alors Uq la tribu engendrée par les Un pour tout n.

La suite de tribus (U_n)_{n \in \mathbb{N}} est croissante, donc sa limite \cup   U_n est un π-système qui engendre Uq. Comme \cup   U_n et Tq sont indépendants, Uq et Tq le sont.

Ainsi pour tout événements A \in U_q, B \in T_q on a P(A \cap B) = P(A)P(B).

Or comme T_q \subset U_q , on prend A=B ce qui donne P(A) = P(A)2

On en conclut que P(A)=0 ou 1

Notes

  1. "tail events" en anglais.
  2. les variables Xi n'ont pas forcément la même distribution de probabilité.

Voir aussi

  • Portail des probabilités et des statistiques Portail des probabilités et des statistiques

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Loi du zéro un de Kolmogorov de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Loi Du Zéro Un De Kolmogorov — En probabilités, la Loi du zéro un de Kolmogorov affirme que certains événements, appelés événements queues[1], soit seront presque sûrement réalisés, soit ne seront presque sûrement pas réalisés. C est à dire que la probablité d un tel événement …   Wikipédia en Français

  • Loi du zero un de Kolmogorov — Loi du zéro un de Kolmogorov En probabilités, la Loi du zéro un de Kolmogorov affirme que certains événements, appelés événements queues[1], soit seront presque sûrement réalisés, soit ne seront presque sûrement pas réalisés. C est à dire que la… …   Wikipédia en Français

  • Loi du zéro-un de Kolmogorov — En probabilités, la Loi du zéro un de Kolmogorov affirme que certains événements, appelés événements queues[1], soit seront presque sûrement réalisés, soit ne seront presque sûrement pas réalisés. C est à dire que la probablité d un tel événement …   Wikipédia en Français

  • Loi du zéro un de kolmogorov — En probabilités, la Loi du zéro un de Kolmogorov affirme que certains événements, appelés événements queues[1], soit seront presque sûrement réalisés, soit ne seront presque sûrement pas réalisés. C est à dire que la probablité d un tel événement …   Wikipédia en Français

  • Loi du zéro-un — de Kolmogorov En probabilités, la Loi du zéro un de Kolmogorov affirme que certains événements, appelés événements queues[1], soit seront presque sûrement réalisés, soit ne seront presque sûrement pas réalisés. C est à dire que la probablité d un …   Wikipédia en Français

  • Loi du zéro un — de Kolmogorov En probabilités, la Loi du zéro un de Kolmogorov affirme que certains événements, appelés événements queues[1], soit seront presque sûrement réalisés, soit ne seront presque sûrement pas réalisés. C est à dire que la probablité d un …   Wikipédia en Français

  • Loi du zéro-un de Borel — La loi du zéro un de Borel a été publiée en 1909 dans l article Les probabilités dénombrables et leurs applications arithmétiques[1], par Émile Borel, en vue de la démonstration du théorème des nombres normaux, et en vue d applications aux… …   Wikipédia en Français

  • Loi du 0-1 — Loi du zéro un de Kolmogorov En probabilités, la Loi du zéro un de Kolmogorov affirme que certains événements, appelés événements queues[1], soit seront presque sûrement réalisés, soit ne seront presque sûrement pas réalisés. C est à dire que la… …   Wikipédia en Français

  • Kolmogorov — Andreï Kolmogorov Andreï Kolmogorov Andreï Nikolaïevitch Kolmogorov (en russe : Андрей Николаевич Колмогоров ; 25 avril 1903 à Tambov 20 octobre 1987 à …   Wikipédia en Français

  • Loi forte des grands nombres — Une loi forte des grands nombres est une loi mathématique selon laquelle la moyenne des n premiers termes d une suite de variables aléatoires converge presque sûrement vers une constante (non aléatoire), lorsque n tend vers l infini. Lorsque ces… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”