Langage formel mathématique

Langage formel mathématique

Notation (mathématiques)

Page d'aide sur l'homonymie Pour les articles homonymes, voir Notation.

On utilise en mathématiques un ensemble de notations pour condenser et formaliser les énoncés et les démonstrations.

Quand deux traductions d'une notation sont données, l'une est la traduction mot-à-mot et l'autre est la traduction naturelle.

Sommaire

Introduction

Comme tous les autres langages formels, ces notations ont pour but de retirer l'ambiguïté d'une proposition en la décomposant en un ensemble limité de symboles dont l'agencement ne peut avoir qu'un unique sens.

Par exemple, pour dire que x vaut un, on utilisera :

x=1\,

Ce langage permet aussi dans une moindre mesure de faciliter la communication entre des mathématiciens ne parlant pas la même langue. S'il ne remplace pas complètement le langage naturel, il permet d'exprimer les concepts mathématiques les plus complexes sous une forme qui est identique suivant les langues et les cultures, évitant ainsi les quiproquos sur les concepts mathématiques, par des gens ne maîtrisant pas toutes les subtilités grammaticales et syntaxiques de la langue de communication employée.

Malheureusement, certains concepts du langage formel mathématique restent spécifiques à une culture donnée. Ainsi, dans la littérature mathématique francophone, l'assertion A \subset B signifie « l'ensemble A est un sous-ensemble ou est égal à B » alors que dans la littérature mathématique anglophone, il signifiera plutôt « l'ensemble A est un sous-ensemble strict de B ».

La liste de symboles qui suit n'est pas exhaustive. Cependant, l'ensemble des symboles présentés ici sont utilisés de façon universelle dans la littérature mathématique francophone.

Opérateurs logiques

Voir algèbre de Boole pour plus de détails.

Ensembles

Ensembles usuels

Relations sur les ensembles

  • \in, appartenance.
n\in\mathbb{N}
  • n appartient à l'ensemble des entiers naturels.
  • n est un entier naturel.
  • \subset, inclusion.
\mathbb{Z} \subset \mathbb{Q}
  • \mathbb{Z} est inclus dans \mathbb{Q}.
  • Les entiers relatifs sont des rationnels.

Quantificateurs

Voir calcul des prédicats pour un point de vue plus théorique sur ces notations.

Pour tout

Notation

\forall, pour tout, quel que soit.

Exemples

\forall n, ( n\in\mathbb{N} \Rightarrow n\ge 0 )

  • Quel que soit n entier naturel, n est supérieur ou égal à zéro.
  • \mathbb{N} est minoré par zéro.

\forall n\in\mathbb{N}, n\ge 0

  • Forme condensée.

\forall a\in\mathbb{R}, ( a \le 0 \land a \ge 0 \Rightarrow a = 0 )

  • Pour tout réel a, si a est inférieur ou égal à zéro, et si a est supérieur ou égal à zéro, alors a est nul.
  • Tout réel, à la fois supérieur ou égal à zéro et inférieur ou égal à zéro, est nul.

Il existe

Notation

\exists , il existe (au moins un).


Exemples

\exists n, n\in\mathbb{N}

  • Il existe un élément dans \mathbb{N}.
  • \mathbb{N} est non vide.

\exists x, x\in\mathbb{R} \land x \ge 1

  • Il existe un réel x tel que x soit plus grand ou égal à un.
  • \mathbb{R} n'est pas majoré par 1.

\exists x\in\mathbb{R}, x \ge 1

  • Forme condensée.

Exemples généraux

\forall n \in\mathbb{N}, \exists m\in\mathbb{N}, m \ge n

  • Pour tout entier naturel n, il existe un autre entier naturel m tel que m soit supérieur ou égal à n.
  • Tout entier naturel est inférieur ou égal à au moins un autre entier naturel.

\exists m\in\mathbb{N}, \forall n \in\mathbb{N}, m \ge n

  • Il existe un entier naturel m tel que quel que soit l'entier naturel n, m soit plus grand que n.
  • \mathbb{N} est majoré.
On notera donc que l'ordre des quantificateurs est important : la première proposition est vraie, l'autre est fausse.

\forall (a,l)\in\mathbb{R}^2, \exists f : \mathbb{R} \rightarrow \mathbb{R}, \forall \epsilon \in \mathbb{R_+^*}, \exists \alpha\in\mathbb{R_+^*}, \forall x\in[a-\alpha,a+\alpha], |f(x)-l|\le\epsilon

  • Pour tout réels a et l, il existe une application f de \mathbb{R} dans \mathbb{R} telle que f tend vers l en a.
Les quantificateurs permettent de définir les notions mathématiques.

Il existe un unique

La notation  \exists ! qui signifie il existe un unique.... Ce quantificateur se définit à partir des quantificateurs précédents et de l'égalité. Pour P(x) une propriété de x :

∃! x P(x) équivaut par définition à ∃ x [P(x) ∧ ∀ y (P(y) ⇒ y = x)]

ou de façon équivalente :

∃! x P(x) équivaut à ∃ x P(x) ∧ ∀ xy [(P(x) ∧ P(y)) ⇒ y = x] .

Exemple. \forall x \in \R^*,\ \exists ! y \in \R^*,\ xy=1 : pour tout x réel non nul, il existe un unique réel y non nul tel que le produit xy soit égal à 1. En d'autres termes, x admet un unique inverse pour la multiplication.

Symboles arithmétiques

Ces symboles sont utilisés pour simplifier l'écriture de longues séries (par exemple en évitant d'utiliser des pointillés). On utilise dans chacun de ces cas une variable dite variable muette qui va prendre des valeurs dans un ensemble précis. Cette variable muette va alors permettre la description d'un terme générique placé après le symbole.

Somme

\sum (Lettre grecque : Sigma majuscule)
Exemple 
Si n est un entier strictement positif :
\sum_{k=1}^n k^2 =1^2+2^2+3^2+4^2+\ldots+n^2 = \frac{n(n+1)(2n+1)}{6}
Ici k est la variable muette, elle prend ses valeurs dans l'ensemble [1,n] (ensemble d'entiers). Le terme général de cette somme est k2.
Autre exemple 
Ω étant l'ensemble des entiers pairs positifs
\sum_{k\in\Omega,\ k<50} k^{2} = \sum_{k=0}^{24} (2k)^2
Ici k appartient à un ensemble défini par deux conditions : ses éléments sont des entiers positifs pairs et ils sont strictement plus petits que 50
Exemple de somme infinie 
\forall x \in \R,\ \sum_{k=0}^\infty \frac{x^k}{k!} = e^x
On aurait pu écrire de manière moins condensée :
1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots+\frac{x^k}{k!}+\dots = e^x

Produit

\prod (Lettre grecque : Pi majuscule)

Ce symbole s'utilise de manière analogue au symbole somme.

Exemple
\prod_{k=1}^{n} \exp(k^{2}) = \exp\left(\sum_{k=1}^{n} k^{2}\right) = \exp\left(\frac{n(n+1)(2n+1)}{6}\right)
On aurait pu écrire de manière moins condensée :
\exp(1^2)\cdot\exp(2^2)\cdot\exp(3^2)\cdot\ldots\cdot\exp(n^2) = \exp\left(\frac{n(n+1)(2n+1)}{6}\right)

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Notation (math%C3%A9matiques) ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Langage formel mathématique de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Langage Formel — Dans de nombreux contextes (scientifique, légal, etc.), on désigne par langage formel un mode d expression plus formalisé et plus précis (les deux n allant pas nécessairement de pair) que le langage de tous les jours (voir langage naturel). En… …   Wikipédia en Français

  • Langage formel — Dans de nombreux contextes (scientifique, légal, etc.), on désigne par langage formel un mode d expression plus formalisé et plus précis (les deux n allant pas nécessairement de pair) que le langage de tous les jours (voir langage naturel). En… …   Wikipédia en Français

  • Langage De Programmation — Un langage de programmation est un langage informatique, permettant à un être humain d écrire un code source qui sera analysé par une machine, généralement un ordinateur. Le code source subit ensuite une transformation ou une évaluation dans une… …   Wikipédia en Français

  • langage — [ lɑ̃gaʒ ] n. m. • v. 1160; lengatge v. 980; de langue I ♦ 1 ♦ Fonction d expression de la pensée et de communication entre les hommes, mise en œuvre au moyen d un système de signes vocaux (parole) et éventuellement de signes graphiques… …   Encyclopédie Universelle

  • LANGAGE (PHILOSOPHIES DU) — L’intérêt pour la langue est un trait dominant de la philosophie contemporaine. Non que nos contemporains soient les premiers à découvrir le langage. Celui ci a toujours été à la place d’honneur dans la philosophie, tant il est vrai que la… …   Encyclopédie Universelle

  • Langage Rationnel — Pour les articles homonymes, voir Langage, Régulier et Rationnel. Les expressions rationnelles permettent d engendrer une famille de langages appelés, suivant les auteurs, langages rationnels ou langages réguliers. Ce sont les langages de type 3… …   Wikipédia en Français

  • Langage régulier — Langage rationnel Pour les articles homonymes, voir Langage, Régulier et Rationnel. Les expressions rationnelles permettent d engendrer une famille de langages appelés, suivant les auteurs, langages rationnels ou langages réguliers. Ce sont les… …   Wikipédia en Français

  • Langage De Description De Format De Document — Un langage de description de format de document est un langage permettant de définir un jeu de règles et contraintes qui seront utilisées pour savoir si une instance de document est valide par rapport à ce même jeu de règles et contraintes.… …   Wikipédia en Français

  • Langage de description — de format de document Un langage de description de format de document est un langage permettant de définir un jeu de règles et contraintes qui seront utilisées pour savoir si une instance de document est valide par rapport à ce même jeu de règles …   Wikipédia en Français

  • Langage de programmation — Programme écrit en Perl. Programm …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”