Groupe Gamma modulaire

Groupe Gamma modulaire

Groupe Gamma modulaire

En mathématiques, on appelle groupe modulaire le groupe quotient de SL(2,) par son centre {Id, -Id}, souvent noté Γ(1), ou même tout simplement Γ. Il convient de l'identifier avec l'image de SL(2,) dans le groupe de Lie PGL(2,).

Sommaire

Action sur le demi-plan de Poincaré

Ce nom provient de l'action à gauche et fidèle de Γ(1) par homographies sur le demi-plan de Poincaré \mathfrak{H}=\{z\in\mathbb{C},\Im(z)><span class=0\}" style="max-width : 98%; height: auto; width: auto;" src="/pictures/frwiki/49/172de99b055cdd5561b4e0130c2f9277.png" border="0"> des nombres complexes de partie imaginaire strictement positive.

Cette action n'est que la restriction de l'action de PGL(2,) sur la droite projective complexe \mathbf{P}_1(\mathbb{C})=\mathbb{C}\cup\{\infty\}: La matrice \left(\begin{matrix}a&b\\c&d\end{matrix}\right) agit sur \mathbf{P}_{1}(\mathbb{C}) en envoyant z sur \frac{az+b}{cz+d}. En coordonnées homogènes, [z:t] est envoyé sur [az+bt:cz+dt].

Comme le groupe PGL(2,) stabilise la droite projective réelle \mathbf{P}_1(\mathbb{R})=\mathbb{R}\cup\{\infty\} de \mathbf{P}_{1}(\mathbb{C}), ce groupe stabilise aussi le complémentaire. Comme PGL(2,) est en outre connexe, il stabilise également chacune des deux composantes de \mathbf{P}_1(\mathbb{C}) \backslash \mathbf{P}_{1}(\mathbb{R}), en particulier \mathfrak{H}. Il en est donc de même du sous-groupe modulaire Γ(1).

Domaine fondamental

La Courbe modulaire

Le quotient du demi-plan de Poincaré par le groupe modulaire donne lieu à une surface de Riemann \Gamma\backslash\mathfrak{H}Gamma sous H»), souvent notée, ce qui selon les conventions peut être considéré un abus de notation, \mathfrak{H}/\GammaH sur Gamma»).

Cette surface de Riemann est souvent dénommée courbe modulaire, car elle paramètre les classes d'isomorphismes de courbes elliptiques complexes. Mieux, la courbe modulaire est la droite complexe . À chaque courbe elliptique complexe E correspond un nombre complexe, son j-invariant, noté j(E) ou jE. Ce nombre caractérise la courbe elliptique E à isomorphisme près. On dit que c'est son module.

À tout point τ du demi-plan de Poincaré on associe le tore quotient E_\tau=\mathbb{C}/(\Z+\tau\Z). C'est une courbe elliptique. On peut donc considérer son module j(Eτ). On obtient ainsi une fonction à valeurs complexes définie sur \mathfrak{H}: c'est la fonction j. C'est une fonction holomorphe sur \mathfrak{H}. Comme Eτ ne dépend que du réseau \Z+\tau\Z, la fonction est constantes sur les orbites de Γ: on dit qu'elle commute à l'action de Γ. Ainsi la fonction j induit par passage au quotient une application \Gamma\backslash\mathfrak{H}\rightarrow \mathbb{C}. Cette application est bijective et biholomorphe, ce qui justifie le nom de courbe modulaire donné au quotient \Gamma\backslash\mathfrak{H}.

Présentation du groupe modulaire

Le groupe modulaire est engendré par les deux transformations

S: z\mapsto -1/z et T: z\mapsto z+1.

Autrement dit, tout élément du groupe modulaire s'obtient en composant S et T. Cette écriture n'est pas unique. En effet les générateurs S et T vérifient les relations

S2 = 1 et (ST)3 = 1,

ce qui donne deux écriture distinctes de 1, la transformation identique. En fait les deux relations ci dessus engendrent toutes les relations entre S et T. On dit alors que l'on a une présentation du groupe modulaire, donnée par générateurs et relations, ce que l'on résume par la formule

\Gamma \cong \langle S, T \mid S^2, (ST)^3 \rangle.

Notons U le produit ST, qui agit par z\mapsto -1/(z+1). La formule ci-dessus revient aussi à dire que tout élément de Γ s'écrit, et ce de manière unique, comme produit de SU et U2, les facteurs U et U2 sont toujours séparés par des facteurs S. On dit encore que le groupe modulaire est le produit libre du sous-groupe engendré par S (isomorphe au groupe cyclique C2 d'ordre 2) par le sous-groupe engendré par U (isomorphe au groupe cyclique C3 d'ordre 3).

\Gamma \cong C_2 * C_3

En termes géométriques,

S agit par l'inversion par rapport au cercle unité, suivie par la réflexion par rapport à la droite Re(z)=0 et
T agit par la translation d'une unité vers la droite.

Références externes

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Groupe Gamma modulaire ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Groupe Gamma modulaire de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Groupe Gamma Modulaire — En mathématiques, on appelle groupe modulaire le groupe quotient de SL(2,ℤ) par son centre {Id, Id}, souvent noté Γ(1), ou même tout simplement Γ. Il convient de l identifier avec l image de SL(2,ℤ) dans le groupe de Lie PGL(2,ℝ). Sommaire 1… …   Wikipédia en Français

  • Groupe gamma modulaire — En mathématiques, on appelle groupe modulaire le groupe quotient de SL(2,ℤ) par son centre {Id, Id}, souvent noté Γ(1), ou même tout simplement Γ. Il convient de l identifier avec l image de SL(2,ℤ) dans le groupe de Lie PGL(2,ℝ). Sommaire 1… …   Wikipédia en Français

  • Transformation modulaire — Groupe Gamma modulaire En mathématiques, on appelle groupe modulaire le groupe quotient de SL(2,ℤ) par son centre {Id, Id}, souvent noté Γ(1), ou même tout simplement Γ. Il convient de l identifier avec l image de SL(2,ℤ) dans le groupe de Lie… …   Wikipédia en Français

  • Groupe modulaire — En mathématiques, on appelle groupe modulaire le groupe , quotient de par son centre {Id, − Id}, souvent noté Γ(1), ou même tout simplement Γ. Il convient de l identifier avec l image de dans le groupe de Lie . Sommair …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Fonction Theta — Fonction thêta En mathématiques, on appelle fonctions thêta certaines fonctions spéciales d une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l étude des variétés abéliennes, des espace de modules, et les… …   Wikipédia en Français

  • Fonction theta — Fonction thêta En mathématiques, on appelle fonctions thêta certaines fonctions spéciales d une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l étude des variétés abéliennes, des espace de modules, et les… …   Wikipédia en Français

  • Fonction théta — Fonction thêta En mathématiques, on appelle fonctions thêta certaines fonctions spéciales d une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l étude des variétés abéliennes, des espace de modules, et les… …   Wikipédia en Français

  • Fonction thêta — Fonction theta de Jacobi θ1 avec u = iπz et q = eiπτ = 0.1e0.1iπ. Par convention (mathematica) …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
https://fr-academic.com/dic.nsf/frwiki/734856 Do a right-click on the link above
and select “Copy Link”