Fonction zeta d'hurwitz

Fonction zeta d'hurwitz

Fonction zêta d'Hurwitz

En mathématiques, la fonction zêta d'Hurwitz est une des nombreuses fonctions zêta. Elle est définie comme suit :

\zeta(s,q) = \sum_{k=0}^\infty (k+q)^{-s}\,.

Elle s'étend par prolongement analytique à tout nombre complexe s différent de 1, et à tout nombre complexe q qui n'est pas entier négatif ou zéro.

Quand q = 1, ceci coïncide avec la fonction zêta de Riemann.

Sommaire

Relation avec les fonctions L de Dirichlet

En fixant un entier Q ≥ 1, les fonctions L de Dirichlet pour les caractères modulo Q sont des combinaisons linéaires, à coefficients constants, de \zeta(s,q)\,q = r/Q et r = 1, 2, ..., Q. Ceci veut dire que les fonctions zêta d'Hurwitz pour un nombre rationnel q ont des propriétés analytiques qui sont étroitement liées à la classe des fonctions L.

Précisément, soit \chi\, un caractère de Dirichlet mod Q. Alors, nous pouvons écrire la fonction L de Dirichlet sous la forme

L(s,\chi) = \sum_{n=1}^\infty \frac {\chi(n)}{n^s} = 
\frac {1}{Q^s} \sum_{k=1}^Q \chi(k)\; \zeta (s,\frac{k}{Q})
.

Formule d'Hurwitz

La formule d'Hurwitz est le théorème qui énonce

\zeta(1-s,x)=\frac{1}{2s}\left[e^{-i\pi s/2}\beta(x;s) + e^{i\pi s/2} \beta(1-x;s) \right]

\beta(x;s)=
2\Gamma(s+1)\sum_{n=1}^\infty \frac {\exp(2\pi inx) } {(2\pi n)^s}=
\frac{2\Gamma(s+1)}{(2\pi)^s} \mbox{Li}_s (e^{2\pi ix})

est une représentation de zêta qui est valide pour 0\le x\le 1 et s > 1. Ici, \mbox{Li}_s (z)\, est la fonction polylogarithme.

Relation avec les polynômes de Bernoulli

La fonction β définie ci-dessus généralise les polynômes de Bernoulli :

B_n(x) = -\Re \left[ (-i)^n \beta(x;n) \right]

\Re z représente la partie réelle de z. De manière alternative,

\zeta(-n,x)=-{B_{n+1}(x) \over n+1}\,

Relation avec la fonction polygamma

La fonction zêta d'Hurwitz généralise la fonction polygamma :

\psi^{(m)}(z)= (-1)^{m+1} m! \zeta (m+1,z)\,

Relation avec fonction transcendante de Lerch

La fonction transcendante de Lerch généralise la fonction zêta d'Hurwitz :

\Phi(z, s, q) = \sum_{k=0}^\infty 
\frac { z^k} {(k+q)^s}\,

et ainsi

\zeta (s,q)=\Phi(1, s, q)\,

Équation fonctionnelle

L'équation fonctionnelle relie les valeurs de la fonction zêta sur le coté gauche -et droit- du plan complexe. Pour les nombres entiers 1\leq m \leq n\,,

\zeta \left(1-s,\frac{m}{n} \right) = 
\frac{2\Gamma(s)}{ (2\pi n)^s } 
\sum_{k=1}^n \cos 
\left( \frac {\pi s} {2} -\frac {2\pi k m} {n} \right)\;
\zeta \left( s,\frac {k}{n} \right)\,

reste valable pour toutes les valeurs de s.

Série de Taylor

La dérivée partielle de la fonction zêta est une suite de Sheffer :

\frac {\partial} {\partial q} \zeta (s,q) = -s\zeta(s+1,q)\,

Ainsi, la série de Taylor peut être écrite comme suit :

\zeta(s,x+y) = \sum_{k=0}^\infty \frac {y^k} {k!} 
\frac {\partial^k} {\partial x^k} \zeta (s,x) =
\sum_{k=0}^\infty {s+k-1 \choose s-1} (-y)^k \zeta (s+k,x)\,

Transformation de Fourier

La Transformée de Fourier discrète de la fonction zêta d'Hurwitz par rapport à l'ordre s est la fonction chi de Legendre.

Relation avec la fonction thêta de Jacobi

Si \vartheta (z,\tau) est la fonction thêta de Jacobi, alors

\int_0^\infty \left[\vartheta (z,it) -1 \right] t^{s/2} \frac{dt}{t}= 
\pi^{-(1-s)/2} \Gamma \left( \frac {1-s}{2} \right) 
\left[ \zeta(1-s,z) + \zeta(1-s,1-z) \right]\,

reste valable pour \Re s > 0\, et z complexe, mais non pour un nombre entier. Pour z=n un entier, ceci se simplifie en

\int_0^\infty \left[\vartheta (n,it) -1 \right] t^{s/2} \frac{dt}{t}= 
2\  \pi^{-(1-s)/2} \ \Gamma \left( \frac {1-s}{2} \right) \zeta(1-s)
=2\  \pi^{-s/2} \ \Gamma \left( \frac {s}{2} \right) \zeta(s)\,

\zeta\, ici est la fonction zêta de Riemann. Cette distinction basée sur z tient compte du fait que la fonction thêta de Jacobi converge vers la Fonction δ de Dirac pour z lorsque t\rightarrow 0.

Bien que la fonction zêta d'Hurwitz est vue par les mathématiciens comme relevant de la plus pure discipline des mathématiques, la théorie des nombres, elle apparaît aussi dans les statistiques appliquées ; voir la loi de Zipf et la loi de Zipf-Mandelbrot.

Références

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Fonction z%C3%AAta d%27Hurwitz ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Fonction zeta d'hurwitz de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Fonction Zeta D'Hurwitz — Fonction zêta d Hurwitz En mathématiques, la fonction zêta d Hurwitz est une des nombreuses fonctions zêta. Elle est définie comme suit : . Elle s étend par prolongement analytique à tout nombre complexe s différent de 1, et à tout nombre… …   Wikipédia en Français

  • Fonction Zeta d'Hurwitz — Fonction zêta d Hurwitz En mathématiques, la fonction zêta d Hurwitz est une des nombreuses fonctions zêta. Elle est définie comme suit : . Elle s étend par prolongement analytique à tout nombre complexe s différent de 1, et à tout nombre… …   Wikipédia en Français

  • Fonction zeta d'Hurwitz — Fonction zêta d Hurwitz En mathématiques, la fonction zêta d Hurwitz est une des nombreuses fonctions zêta. Elle est définie comme suit : . Elle s étend par prolongement analytique à tout nombre complexe s différent de 1, et à tout nombre… …   Wikipédia en Français

  • Fonction zêta d'Hurwitz — En mathématiques, la fonction zêta d Hurwitz est une des nombreuses fonctions zêta. Elle est définie comme suit : . Elle s étend par prolongement analytique à tout nombre complexe s différent de 1, et à tout nombre complexe q qui n est pas… …   Wikipédia en Français

  • Fonction zêta de Hurwitz — En mathématiques, la fonction zêta de Hurwitz est une des nombreuses fonctions zêta. Elle est définie comme suit : . Elle s étend par prolongement analytique à tout nombre complexe s différent de 1, et à tout nombre complexe q qui n est pas… …   Wikipédia en Français

  • Fonction Zeta De Lerch — Fonction zêta de Lerch En mathématiques, la fonction zêta de Lerch est une fonction spéciale qui généralise la fonction zêta d Hurwitz et le polylogarithme. Elle est donnée par La fonction zêta de Lerch est reliée à la fonction transcendante de… …   Wikipédia en Français

  • Fonction zeta de Lerch — Fonction zêta de Lerch En mathématiques, la fonction zêta de Lerch est une fonction spéciale qui généralise la fonction zêta d Hurwitz et le polylogarithme. Elle est donnée par La fonction zêta de Lerch est reliée à la fonction transcendante de… …   Wikipédia en Français

  • Fonction zeta de lerch — Fonction zêta de Lerch En mathématiques, la fonction zêta de Lerch est une fonction spéciale qui généralise la fonction zêta d Hurwitz et le polylogarithme. Elle est donnée par La fonction zêta de Lerch est reliée à la fonction transcendante de… …   Wikipédia en Français

  • Fonction zeta de Catalan — Fonction bêta de Dirichlet En mathématiques, la fonction β de Dirichlet, aussi appelée fonction ζ de Catalan, est un des exemples les plus simples de fonction L, après la fonction zêta de Riemann. C est un cas particulier de fonction L de… …   Wikipédia en Français

  • Fonction zêta de Catalan — Fonction bêta de Dirichlet En mathématiques, la fonction β de Dirichlet, aussi appelée fonction ζ de Catalan, est un des exemples les plus simples de fonction L, après la fonction zêta de Riemann. C est un cas particulier de fonction L de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”