- Fonction absolument continue
-
Absolue continuité
En mathématiques, on introduit les notions de fonction absolument continue et de mesure absolument continue. Ces deux concepts entretiennent des rapports.
Sommaire
Fonction absolument continue
Motivation
Une fonction continue sur un intervalle est égale à la dérivée de son intégrale (théorème fondamental de l'analyse). Dans un cadre plus général, celui de l'intégrale de Lebesgue, une fonction est égale presque partout à la dérivée de son intégrale. Par contre, une fonction presque partout dérivable, même si la dérivée est , peut ne pas être égale à l'intégrale de sa dérivée. L'escalier du diable, ou escalier de Cantor, est un exemple de ce phénomène. Travailler dans l'espace des fonctions absolument continues assure que les fonctions considérées sont bien égales à l'intégrale de leur dérivée.
Définition
Soit un intervalle. On dit que la fonction est absolument continue sur si, pour tout réel , il existe un tel que, pour toute suite de sous-intervalles de d'intérieurs disjoints,
Propriétés
- Si une fonction est continue sur un segment , alors il existe une fonction intégrable sur (au sens de Lebesgue) telle que pour tout
si et seulement si est absolument continue sur
- Toute fonction absolument continue sur un intervalle est à variation bornée sur cet intervalle.
- Si est absolument continue sur l'intervalle alors elle possède la propriété N de Luzin : l'image par de tout ensemble de mesure nulle (pour la mesure de Lebesgue) est de mesure nulle.
- Si est absolument continue, alors est dérivable presque partout.
- Si est continue, à variation bornée et possède la propriété N de Luzin, alors elle est absolument continue.
Contre-exemple
La fonction continue qui a pour graphe l'escalier du diable n'est pas absolument continue : l'image de l'ensemble de Cantor, qui est de mesure nulle, est tout entier.
Mesure absolument continue
Soient et deux mesures complexes sur un espace mesuré On dit que est absolument continue par rapport à si et seulement si pour tout ensemble mesurable , ce que l'on note
Le théorème de Radon-Nikodym donne une autre caractérisation dans le cas où est positive, finie et est complexe, finie: il existe alors fonction mesurable telle que La fonction est appelée densité de la mesure par rapport à la mesure
Lien entre fonction réelle absolument continue et mesure absolument continue
Une fonction est localement absolument continue si et seulement si sa distribution dérivée est une mesure absolument continue par rapport à la mesure de Lebesgue. Par exemple, une mesure bornée sur l'ensemble des boréliens de la droite réelle est absolument continue par rapport à la mesure de Lebesgue si et seulement si la fonction de répartition associée
est localement une fonction absolument continue.
Voir aussi
- Théorème de Radon-Nikodym
- Fonction à variation bornée
- Walter Rudin, Analyse réelle et complexe : cours et exercices [détail des éditions]
- Portail des mathématiques
Catégories : Analyse | Analyse réelle | Théorie de la mesure
Wikimedia Foundation. 2010.