Espace de Calabi-Yau

Espace de Calabi-Yau

Variété de Calabi-Yau

Un exemple de variété de Calabi-Yau

Une variété de Calabi-Yau, ou espace de Calabi-Yau est un type particulier de variété en mathématiques intervenant dans des domaines comme la géométrie algébrique mais également en physique théorique et notamment dans la théorie des supercordes où elles jouent le rôle d'espace de compactification. C'est dans le cadre de l'étude de ces variétés qu'a eu lieu l'une des plus importantes collaborations entre physiciens et mathématiciens qui a abouti à la découverte de la symétrie miroir qui établit une relation non-triviale entre deux variétés de Calabi-Yau dont les topologies peuvent être différentes. La définition précise de ces variétés est très technique. Elle sera exposée plus bas.

Sommaire

Définition formelle

Une variété de Calabi-Yau est définie comme une variété kählérienne dont la première classe de Chern est nulle. Le mathématicien Eugenio Calabi a conjecturé en 1957 que de telles variétés admettent nécessairement une métrique dont le tenseur de Ricci s'annule (on parle aussi d'espace Ricci-plat). La conjecture a été démontrée par Shing-Tung Yau en 1977 dans ce qui est devenu le théorème de Yau. Dès lors, on peut également définir une variété de Calabi-Yau comme un espace compact, Kähler et Ricci-plat.

De façon encore équivalente, un espace de Calabi-Yau de dimension complexe n\, (ce qui correspond à une dimension réelle 2n\,) peut être vu comme une variété riemannienne d'holonomie réduite à SU(n)\, (le groupe d'holonomie d'une variété riemannienne de dimension réelle 2n\, étant génériquement le groupe SO(2n)\,).

Enfin, on peut encore voir de façon équivalente un espace de Calabi-Yau comme une variété kählérienne admettant une (n,0)-\,forme holomorphe définie globalement et ne s'annulant nulle part. Cette dernière condition est équivalente à ce que le fibré canonique sur la variété soit trivial. Ceci se traduit par une classe canonique triviale. Ce dernier point de vue est utile pour généraliser la définition d'une variété Calabi-Yau au cas d'espaces possédant des singularités car même si la classe de Chern n'est pas bien définie pour un espace singulier on peut encore considérer les notions de fibré canonique et de classe canonique.

Il est notable toutefois que même pour certains des Calabi-Yau les plus simples (voir plus bas) on ne sait pas exhiber explicitement la métrique Ricci-plate bien que son existence soit assurée par le théorème de Yau.

Exemples de variétés de Calabi-Yau

  • En dimension complexe 1 la seule variété Calabi-Yau est le 2-tore.
  • En dimension complexe 2 il n'existe que deux variétés Calabi-Yau à isomorphisme près. Il s'agit du 4-tore et de l'espace K3. Sur ce dernier, aucune métrique Ricci-plate explicite n'est connue. Il en va de même pour tous les Calabi-Yau de dimensions supplémentaires non-triviaux.
  • À partir de la dimension complexe 3 (dimension réelle 6) le nombre de Calabi-Yau devient infini et il n'existe pas encore de classification générale. On peut en construire toutefois un grand nombre qui possèdent en plus la propriété d'être des variétés toriques.

Usage en théorie des cordes

Les variétés Calabi-Yau sont particulièrement utilisées en théorie des supercordes car elles préservent une partie de la supersymétrie de la théorie originale à 10 dimensions sous le processus de réduction dimensionnelle pour obtenir une théorie effective à 4 dimensions. En plus des propriétés phénoménologiques intéressantes de la supersymétrie (notamment pour expliquer la faiblesse de la constante cosmologique), l'existence de la supersymétrie au niveau de la théorie effective simplifie l'étude formelle des modèles envisagés car nombre de constantes de couplage sont protégées de corrections perturbatives ou non-perturbatives par l'intermédiaire de théorème de non-renormalisation. Leur détermination à l'ordre des arbres dans l'expansion diagrammatique[1] de la théorie est alors suffisante pour connaître leur valeur dans la théorie effective.

Description

La complexité de cette variété est telle qu'elle ne peut pas être représentée exactement. Elle contiendrait à elle seule six dimensions, raison pour laquelle de tels replis et déformations apparaissent. Car c'est bien de la compression de la variété que découle cette complexité en 2 dimensions. Lorsqu'elle est utilisée en tant que dimension enroulée, la taille d'une variété de Calabi-Yau vaut la longueur de Planck, soit 10-33cm.

Transitions de géométrie

Article détaillé : Transition géométrique.

Il est remarquable que contrairement à l'intuition classique, la théorie des cordes puisse donner des résultats équivalents au niveau de la théorie effective à 4 dimensions lorsqu'elle est compactifiée sur deux variétés différentes. Parfois ces deux variétés Calabi-Yau peuvent même avoir des topologies différentes. On parle alors de transition géométrique. Des exemples particuliers de telles transitions sont donnés par la transition de flop et la transition de conifold.

Symétrie miroir

Article détaillé : Symétrie miroir.

Point de vue physique

Point de vue mathématique

Voir aussi

Notes

  1. il est parfois nécessaire de pousser le développement jusqu'à l'ordre d'une boucle.

Articles connexes

Liens externes

Quelques exemples de variétés Calabi-Yau  :

  • Portail de la physique Portail de la physique
  • Portail des mathématiques Portail des mathématiques
  • Portail de la géométrie Portail de la géométrie
Ce document provient de « Vari%C3%A9t%C3%A9 de Calabi-Yau ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Espace de Calabi-Yau de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Calabi-Yau — Variété de Calabi Yau Un exemple de variété de Calabi Yau Une variété de Calabi Yau, ou espace de Calabi Yau est un type particulier de variété en mathématiques intervenant dans des domaines comme la géométrie algébrique mais également en… …   Wikipédia en Français

  • Variete de Calabi-Yau — Variété de Calabi Yau Un exemple de variété de Calabi Yau Une variété de Calabi Yau, ou espace de Calabi Yau est un type particulier de variété en mathématiques intervenant dans des domaines comme la géométrie algébrique mais également en… …   Wikipédia en Français

  • Variété de Calabi-Yau — Un exemple de variété de Calabi Yau En mathématiques, une variété de Calabi Yau, ou espace de Calabi Yau (souvent abrégé simplement en Calabi Yau) est un type particulier de variété intervenant en géométrie algébrique. On les rencontre également… …   Wikipédia en Français

  • Variété de calabi-yau — Un exemple de variété de Calabi Yau Une variété de Calabi Yau, ou espace de Calabi Yau est un type particulier de variété en mathématiques intervenant dans des domaines comme la géométrie algébrique mais également en physique théorique et… …   Wikipédia en Français

  • Espace de compactification — Réduction dimensionnelle En physique, une réduction dimensionnelle est une procédure par laquelle, étant donnée une théorie formulée sur un espace temps de dimension , on construit une autre théorie formulée sur un sous espace de dimension . Dans …   Wikipédia en Français

  • Espace K3 — K3 (géométrie) Pour les articles homonymes, voir K3. En géométrie différentielle ou algébrique, l espace K3, ou encore la surface K3, est la variété de Calabi Yau de plus petite dimension différent d un tore. C est une variété complexe de… …   Wikipédia en Français

  • Orbifold — En mathématiques, un orbifold est une généralisation de la notion de variété[1] contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Ichirō Satake (de) en 1956 sous le nom de V manifolds …   Wikipédia en Français

  • Opération d'orbifold — Orbifold En mathématiques, un orbifold est une généralisation de la notion de variété[1] contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Satake en 1956 sous le nom de V manifolds. Pour… …   Wikipédia en Français

  • Transition d'obrifold — Orbifold En mathématiques, un orbifold est une généralisation de la notion de variété[1] contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Satake en 1956 sous le nom de V manifolds. Pour… …   Wikipédia en Français

  • Theorie des cordes — Théorie des cordes Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes. La théorie des cordes est l une des voies envisagées pour régler une des questions majeures de la …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”