Reduction dimensionnelle

Reduction dimensionnelle

Réduction dimensionnelle

En physique, une réduction dimensionnelle est une procédure par laquelle, étant donnée une théorie formulée sur un espace-temps X_N\, de dimension N\,, on construit une autre théorie formulée sur un sous-espace Y_M\subset X_N\, de dimension M<N\, . Dans la suite nous allons décrire brièvement plusieurs procédures de réduction communément utilisées.

Sommaire

Réduction de Kaluza-Klein

Article détaillé : théorie de Kaluza-Klein.

Dans cette approche, la plus simple, on contraint les champs de la théorie en N\, dimensions à ne dépendre que des M\, coordonnées du sous-espace Y_M\,. Par exemple si on considère Y_4=\mathbb{R}^4\,, c'est-à-dire l'espace de Minkowski et X_5=\mathbb{R}^4\times S_1\,, on parle de réduction sur un cercle et le cercle est appelé espace de compactification. Dans ce cas on contraint les champs à ne pas dépendre de la coordonnée angulaire sur le cercle. C'est le cadre historiquement considéré par Theodor Kaluza et Oskar Klein dans le contexte de la relativité générale à 5 dimensions pour tenter de reproduire la théorie de l'électromagnétisme et son invariance de jauge en 4 dimensions à partir de l'invariance par reparamétrisation de la théorie originale à 5 dimensions. Par usage, la généralisation de cette réduction dimensionnelle à d'autres espaces est alors communément appelée également réduction de Kaluza-Klein. Si on peut écrire X_N=Y_M\times K_{N-M}\, avec K_{N-M}\, une variété compacte de dimension N-M\, alors on continue à appeler K_{N-M}\, l'espace de compactification et on dit qu'on effectue une réduction sur K_{N-M}\,[1].

Si la théorie originale possède des équations du mouvement issues d'une action \mathcal{S}_N\, alors il est nécessaire de s'assurer que la restriction imposée aux champs de ne dépendre que des coordonnées de Y_M\, est compatible avec les équations du mouvements, c'est-à-dire que les champs restreints sont encore des solutions des équations du mouvement. On parle alors dans ce cas de troncation consistante. Les réductions sur des tores ou réductions toroïdales sont toujours consistantes. Pour des variétés de compactification plus compliquées(comme des sphères par exemple) la réponse n'est pas évidente et demande une analyse au cas par cas.

Réduction de Scherk-Schwarz

Les champs ne sont pas indépendants des coordonnées de K_{N-M}\, mais leur dépendance est simple et dépend des symétries de la théorie originale.

Notes

  1. On peut considérer en fait le cas plus général où X_N\, est une fibration sur Y_M\, de fibre K_{N-M}\,.

Voir aussi

  • Portail de la physique Portail de la physique
Ce document provient de « R%C3%A9duction dimensionnelle ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Reduction dimensionnelle de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Réduction dimensionnelle — En physique, une réduction dimensionnelle est une procédure par laquelle, étant donnée une théorie formulée sur un espace temps de dimension , on construit une autre théorie formulée sur un sous espace de dimension . Dans la suite nous allons… …   Wikipédia en Français

  • Espace de compactification — Réduction dimensionnelle En physique, une réduction dimensionnelle est une procédure par laquelle, étant donnée une théorie formulée sur un espace temps de dimension , on construit une autre théorie formulée sur un sous espace de dimension . Dans …   Wikipédia en Français

  • Theorie des cordes — Théorie des cordes Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes. La théorie des cordes est l une des voies envisagées pour régler une des questions majeures de la …   Wikipédia en Français

  • Théorie des cordes — Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes. La théorie des cordes est une théorie traitant de l une des questions de la physique théorique : fournir une… …   Wikipédia en Français

  • Gravitation quantique — Gravité quantique Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire de la …   Wikipédia en Français

  • Gravite quantique — Gravité quantique Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire de la …   Wikipédia en Français

  • Gravité Quantique — Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire de la …   Wikipédia en Français

  • Gravité quantique — La gravité quantique est une branche de la physique théorique tentant d unifier la mécanique quantique et la relativité générale. Sommaire 1 Problématique 1.1 Effet de la gravité en mécanique quantique 2 Approches candidates …   Wikipédia en Français

  • Dimension supplémentaire — Dimensions supplémentaires Les dimensions enroulées, ou dimensions supplémentaires sont les fondements de la théorie de Kaluza Klein mais apparaissent également dans des modèles plus généraux de compactification utilisés en cosmologie branaire ou …   Wikipédia en Français

  • Dimensions Supplémentaires — Les dimensions enroulées, ou dimensions supplémentaires sont les fondements de la théorie de Kaluza Klein mais apparaissent également dans des modèles plus généraux de compactification utilisés en cosmologie branaire ou en théorie des supercordes …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”