Ellipsoïde

Ellipsoïde

En mathématiques, un ellipsoïde est une surface du second degré de l'espace euclidien à trois dimensions. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de point à l'infini.

Ellipsoïde avec (a, b, c) = (4, 2, 1)

L'ellipsoïde admet un centre et au moins trois plans de symétrie. L'intersection d'un ellipsoïde avec un plan est une ellipse, un point ou l'ensemble vide.

Dans un repère bien choisi, son équation est de la forme

{x^2 \over a^2}+{y^2 \over b^2}+{z^2 \over c^2}-1=0

a, b et c sont des paramètres strictement positifs donnés, égaux aux longueurs des demi-axes de l'objet.

Dans le cas très particulier où a = b = c, la surface est une sphère de rayon a.

Dans le cas où seuls deux paramètres sont égaux, l'ellipsoïde peut être engendré par la rotation d'une ellipse autour d'un de ses axes. Il s'agit d'un ellipsoïde de révolution, parfois appelé sphéroïde, qu'on retrouve sous forme de miroirs elliptiques dans les projecteurs de cinéma, et de ballons de rugby. On montre aussi que cette surface est optimale pour les dirigeables.

L'équation d'un ellipsoïde imaginaire est de la forme

{x^2 \over a^2}+{y^2 \over b^2}+{z^2 \over c^2}+1=0


L'équation genre ellipsoïde, cône imaginaire :

{x^2 \over a^2}+{y^2 \over b^2}+{z^2 \over c^2}=0


Sommaire

Cas particulier

Ellipsoïde de révolution

Article détaillé : Ellipsoïde de révolution.

Avec a = b, l'équation s'écrit :

\frac{x^2+y^2}{a^2}+\frac{z^2}{c^2}-1=0

On obtient un ellipsoïde de révolution d'axe Oz. En effet, les sections par les plans z = k sont des cercles d'axe Oz.

La méridienne dans le plan xOz que l'on obtient en faisant y = 0 est l'ellipse d'équation :

{x^2 \over a^2}+{z^2 \over c^2}-1=0

On remarquera que l'on passe de l'équation de la méridienne à l'équation de la surface de révolution en remplaçant x2 par :x2 + y2

Volume

Le volume d'un ellipsoïde défini par l'équation ci-dessus est égal à :

\frac{4}{3} 
\pi abc

Exemples d'ellipsoïdes

Annexes

Articles connexes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Ellipsoïde de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • ellipsoïde — [ elipsɔid ] n. m. et adj. • 1705; de 2. ellipse et oïde ♦ Math. 1 ♦ Quadrique dont les sections planes sont des ellipses. Ellipsoïde de révolution : solide engendré par une ellipse tournant autour d un de ses axes (allongé, autour du grand axe;… …   Encyclopédie Universelle

  • Ellipsoide — Ellipsoïde En mathématiques, un ellipsoïde est une surface du second degré de l espace euclidien à trois dimensions. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de point à l infini. Ellipsoïde avec… …   Wikipédia en Français

  • ellipsoïde — (èl li pso i d ) s. m. 1°   Terme de géométrie. Solide engendré par la révolution d une moitié d ellipse autour de l un de ses axes. Ellipsoïde de révolution. •   La comparaison des degrés terrestres donne des différences qu il est difficile d… …   Dictionnaire de la Langue Française d'Émile Littré

  • ellipsoïde — elipsoidas statusas T sritis fizika atitikmenys: angl. ellipsoid vok. Ellipsoid, n rus. эллипсоид, m pranc. ellipsoïde, m …   Fizikos terminų žodynas

  • Ellipsoide de Bessel — Ellipsoïde de Bessel L ellipsoïde de Bessel (encore appelé Bessel 1841) est un ellipsoïde de référence utilisé pour l Europe. Friedrich Wilhelm Bessel l a calculé en 1841 à partir d un important recueil de données topographiques à travers l… …   Wikipédia en Français

  • Ellipsoïde De Bessel — L ellipsoïde de Bessel (encore appelé Bessel 1841) est un ellipsoïde de référence utilisé pour l Europe. Friedrich Wilhelm Bessel l a calculé en 1841 à partir d un important recueil de données topographiques à travers l Europe (incluant la… …   Wikipédia en Français

  • Ellipsoïde de bessel — L ellipsoïde de Bessel (encore appelé Bessel 1841) est un ellipsoïde de référence utilisé pour l Europe. Friedrich Wilhelm Bessel l a calculé en 1841 à partir d un important recueil de données topographiques à travers l Europe (incluant la… …   Wikipédia en Français

  • Ellipsoide de revolution — Ellipsoïde de révolution Une ellipsoïde de révolution est un modèle géométrique couramment utilisé pour approximer une géoïde. Chaque système géodésique (repère dans lequel sont calculées les coordonnées GPS par exemple) dépend d une ellipsoïde… …   Wikipédia en Français

  • Ellipsoïde De Révolution — Une ellipsoïde de révolution est un modèle géométrique couramment utilisé pour approximer une géoïde. Chaque système géodésique (repère dans lequel sont calculées les coordonnées GPS par exemple) dépend d une ellipsoïde de révolution. Elle permet …   Wikipédia en Français

  • Ellipsoïde allongé — ● Ellipsoïde allongé ellipsoïde engendré par la rotation d une ellipse autour de son grand axe …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”