Disjonction logique

Disjonction logique

La disjonction logique, ou disjonction non exclusive de deux assertions est une façon d'affirmer qu'au moins une de ces deux assertions est vraie (la première, la deuxième, ou les deux).

Sommaire

Utilisation de la disjonction logique

Dans le langage logique ou mathématique et dans les domaines techniques qui l'emploient, elle se traduit par le OU logique, un opérateur logique dans le calcul des propositions. La proposition obtenue en reliant deux propositions par cet opérateur s'appelle également leur disjonction, ou leur somme logique. La disjonction de deux propositions P et Q est vraie quand l'une des propositions est vraie, et est fausse quand les deux sont simultanément fausses. La disjonction s'écrit :

PQ

et se lit

« P ou Q »

Le symbole « ∨ » s'appelle connecteur de disjonction.

La table de vérité d’une disjonction est donnée par le tableau suivant

P Q P ∨ Q
vrai vrai vrai
vrai faux vrai
faux vrai vrai
faux faux faux

Note : Boole, par analogie étroite avec les mathématiques ordinaires, imposa dans la définition de x + y, la condition d'exclusion mutuelle de x et y. William Jevons, et pratiquement tous les logiciens en mathématiques qui lui succédèrent, préconisèrent pour diverses raisons, l'emploi d'une définition de la somme logique ne rendant pas obligatoire l'exclusion mutuelle.

La disjonction que nous avons décrite est un opérateur binaire, ce qui signifie qu'elle combine deux propositions en une seule. Cependant, nous pouvons enchaîner des disjonctions, en considérant par exemple ABC, qui est par définition l'une ou l'autre des deux propositions logiquement équivalentes (AB) ∨ C ou A ∨ (BC). Cette proposition est vraie quand l'une des propositions A, B, ou C est vraie. L'enchaînement des conjonctions est rendu possible grâce à l'associativité du ∨. L'opérateur est également commutatif ; AB est équivalent à BA.

Donnons quelques propriétés de la conjonction :
Soient P, Q et R trois propositions.

  • (PP) ⇔ P idempotence du « ou »
  • (PQ) ⇔ (QP) commutativité du « ou »
  • ((PQ) ∨ R) ⇔ (P ∨ (QR)) associativité du « ou »
  • ¬ (PQ) ⇔ ((¬ P) ∧ (¬ Q)) la négation d'une disjonction est la conjonction des négations[1]
  • ¬ (PQ) ⇔ ((¬ P) ∨ (¬ Q)) la négation d'une conjonction est la disjonction des négations[2]
  • (P ∨ (QR)) ⇔ ((PQ) ∧ (P ∨ R)) distributivité de « ou » par rapport à « et »
  • (P ∧ (QR)) ⇔ ((PQ) ∨ (PR)) distributivité de « et » par rapport à « ou »

La notion correspondante en théorie des ensembles est la réunion.

Et/ou

On trouve parfois l'expression "et/ou". C'est un barbarisme, dont le sens est exactement le même que la conjonction de coordination "ou" toute seule (« l'un ou l'autre ou les deux ») , qu'il faut préférer. On remarquera d'ailleurs que le signe "/" signifie ... "ou" : si cette conjonction était ambigüe alors l'expression et/ou ne le serait pas moins !

Dans le langage courant, « l'un ou l'autre, mais pas les deux » sera rendu par l'expression « ou bien ». En logique cela s'appelle la disjonction exclusive ou le « ou exclusif ». Cependant, mais seulement si le contexte est sans ambiguïté, par exemple lorsque nous demandons « prendrez-vous du café ou du thé ? » -on suppose que la personne sollicitée ne prendra pas les deux- , il arrive que « ou » indique une alternative et a le même sens que « ou bien ».

Le « ou » logique entre deux propositions est également vrai lorsque les deux propositions sont vraies ; ainsi le « ou » s'appelle aussi la disjonction inclusive. Ceci est parfois rendu dans le langage courant[3] par l'expression incorrecte et logiquement indéfinie « et / ou ».

Notes et références

Voir aussi

Articles connexes

  • Conjonction logique
  • Dilemme et principe d'agrégation (si j'ai l'obligation de faire A d'une part, et B d'autre part, mais que je ne peux faire A et B simultanément, l'obligation est-elle conjonctive (j'ai l'obligation de faire A et B bien que ce soit impossible) ou disjonctive?)
  • Quantificateur existentiel

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Disjonction logique de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Disjonction Logique — La disjonction logique, ou disjonction non exclusive de deux assertions est une façon d affirmer qu au moins une de ces deux assertions est vraie (la première, la deuxième, ou les deux). Dans le langage logique ou mathématique et dans les… …   Wikipédia en Français

  • Logique binaire — Algèbre de Boole (logique) Pour les articles homonymes, voir Algèbre de Boole. L algèbre de Boole, ou calcul booléen, est la partie des mathématiques, de la logique et de l électronique qui s intéresse aux opérations et aux fonctions sur les… …   Wikipédia en Français

  • Logique booléenne — Algèbre de Boole (logique) Pour les articles homonymes, voir Algèbre de Boole. L algèbre de Boole, ou calcul booléen, est la partie des mathématiques, de la logique et de l électronique qui s intéresse aux opérations et aux fonctions sur les… …   Wikipédia en Français

  • Disjonction — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Le mot disjonction est employé dans plusieurs matières : en linguistique, disjonction en logique, disjonction logique Catégorie : Homonymie …   Wikipédia en Français

  • disjonction — [ disʒɔ̃ksjɔ̃ ] n. f. • XIIIe; lat. disjunctio 1 ♦ Action de disjoindre (des idées); son résultat. ⇒ désunion, écartement, séparation. La disjonction de deux questions. Les procédés logiques, grammaticaux de disjonction (⇒ disjonctif) . 2 ♦… …   Encyclopédie Universelle

  • Logique (mathématiques) — Logique mathématique La logique mathématique est née à la fin du XIXe siècle de la logique au sens philosophique du terme. Ses débuts furent marqués par la rencontre entre deux idées nouvelles : la volonté chez Frege, Russell, Peano et… …   Wikipédia en Français

  • Logique Intuitionniste — L intuitionnisme est une position philosophique vis à vis des mathématiques proposée par le mathématicien hollandais Luitzen Egbertus Jan Brouwer comme une alternative à l approche dite classique. Elle a été ensuite formalisée, sous le nom de… …   Wikipédia en Français

  • Logique Mathématique — La logique mathématique est née à la fin du XIXe siècle de la logique au sens philosophique du terme. Ses débuts furent marqués par la rencontre entre deux idées nouvelles : la volonté chez Frege, Russell, Peano et Hilbert de donner une …   Wikipédia en Français

  • Logique mathematique — Logique mathématique La logique mathématique est née à la fin du XIXe siècle de la logique au sens philosophique du terme. Ses débuts furent marqués par la rencontre entre deux idées nouvelles : la volonté chez Frege, Russell, Peano et… …   Wikipédia en Français

  • Logique Linéaire — La logique linéaire (LL), inventée par le logicien Jean Yves Girard en 1986, est un produit de la théorie de la démonstration moderne. Elle résulte d une analyse du comportement des preuves des logiques classique et intuitionniste au travers de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”