- Corps Algébriquement Clos
-
Corps algébriquement clos
En mathématiques, un corps K est dit algébriquement clos si tout polynôme de degré supérieur ou égal à un, à coefficients dans K, admet (au moins) une racine dans K.
Dans ce cas, chacun de ces polynômes se divise en facteurs linéaires. Il peut être démontré qu'un corps est algébriquement clos si et seulement s'il n'a pas d'extension algébrique propre, et ceci est parfois pris comme définition.
Par exemple, le corps des nombres réels n'est pas algébriquement clos, parce que le polynôme X2 + 1 n'a pas de racine réelle. Au contraire, le corps des nombres complexes est algébriquement clos : c'est le théorème fondamental de l'algèbre.
Tout corps a une clôture algébrique, qui est le plus petit corps algébriquement clos dont K est un sous-corps. La clôture algébrique d'un corps donné est unique à K-isomorphisme (isomorphisme laissant invariants les éléments de K) près. En particulier, le corps des nombres complexes est la clôture algébrique du corps des nombres réels et le corps des nombres algébriques est la clôture algébrique du corps des nombres rationnels.
Un corps fini K ne peut être algébriquement clos. En effet, si , le polynôme
n'admet aucune racine dans K (il prend la valeur 1 en chaque élément de K).
- Portail des mathématiques
Catégories : Théorie des corps | Théorie de Galois
Wikimedia Foundation. 2010.