Calcul sto

Calcul sto

Calcul stochastique

Le calcul stochastique est létude des phénomènes aléatoires dépendant du temps. À ce titre, il est une extension de la théorie des probabilités.

Sommaire

Applications

Le domaine dapplication du calcul stochastique comprend :

Processus aléatoires

Un processus aléatoire X est une famille de variables aléatoires indexée par un sous-ensemble de \R ou \N, souvent assimilé au temps (voir aussi Processus stochastique). C'est donc une fonction de deux variables : le temps et l'état du monde ω. L'ensemble des états du monde est traditionnellement noté Ω. L'application qui à un ω fixé associe X(ω,t) , t variable, est appelée trajectoire du processus; c'est une simple fonction du temps (sans caractère aléatoire) qui représente la réalisation particulière du processus sous l'occurence ω. Pour un t donné , X(ω,t) est une simple variable aléatoire dont la valeur exacte n'est connue qu'en t. Le mouvement brownien est un exemple particulièrement simple de processus aléatoire indexé par \R. Il peut être défini comme l'unique processus Wt à accroissement gaussien tel que la corrélation entre Wt et Ws soit min(t,s). On peut également le voir comme la limite d'une marche aléatoire lorsque le pas de temps tend vers 0.

Filtrations

Une filtration Ft, t\in \mathbb{N} est une famille de sous-tribus emboîtées de Ω, qui peut sinterpréter comme linformation disponible qui évolue au cours du temps. Ainsi, une filtration est une famille de sigma-algèbres, indexée par le temps t \ge 0 telle que F_s \subset F_t si s \le t, ce qui reflète l'augmentation de l'information disponible.

Espérance conditionnelle selon une filtration

Processus d'Itō

Article détaillé : Processus d'Itô.

Le processus d'Itō, d'après le nom de son inventeur Kiyoshi Itō, traite des opérations mathématiques dans un processus stochastique. Le plus important est l'intégrale stochastique d'Itō.

Intégrale d'Itô

Article détaillé : Intégrale d'Itô.

Avant le calcul, indiquons que :

  • Les majuscules telles que X notent les variables aléatoires.
  • Les majuscules avec en indice un t (par exemple Bt) notent un processus stochastique qui est une famille de variables aléatoires indexée par t.
  • Un petit d à gauche d'un processus (par exemple dBt) signifie un changement infinitésimal dans le processus aléatoire qui est une variable aléatoire.

L'intégrale stochastique d'un processus Xt par rapport à un processus Bt est décrite par l'intégrale :

\int_{a}^{b} X_t\, \mathrm dB_t

et est définie comme la limite en moyenne quadratique des sommes correspondantes de la forme :

\sum X_{t_i} (B_{t_{i+1}} - B_{t_i}).

Un point essentiel lié à cette intégrale est le lemme d'Itô.

La somme comme le produit de variables aléatoires est définie dans la théorie des probabilités. La somme implique une convolution de la fonction de densité des probabilités, et la multiplication est une addition répétée.

Définition d'un processus d'Itô

Une fois précisée la définition choisie pour une intégrale stochastique, on définit alors un processus d'Itô comme étant une processus stochastique Xt de la forme

X_t = X_0 +\int_0^t u(s,\omega){\rm d}s +\int_0^t v(s,\omega) {\rm d}B_s

avec u et v deux fonctions aléatoires satisfaisant quelques hypothèses techniques d'adaptation au processus Bt et ω est une réalisation dans l'espace de probabilité sous-jacent.

Dans le formalisme du calcul différentiel avec la prescription d'Itô on note de façon équivalente la relation précédente comme

{\rm d}X_t = u(t,\omega)\,{\rm d}t + v(t,\omega)\,{\rm d}B_t

Autre prescription

Il existe une autre prescription notable pour définir une intégrale stochastique, c'est la prescription de Stratonovich. L'intégrale de Stratonovich est définie comme la limite des sommes discrètes

\sum X_{\frac{t_i+t_{i+1}}{2}} (B_{t_{i+1}} - B_{t_i}).

La différence notable avec la prescription d'Itô est que la quantité X_{(t_i+t_{i+1})/2} n'est pas indépendante au sens des probabilités de la variable B_{t_{i+1}} - B_{t_i}. Ainsi, contrairement à la prescription d'Ito, dans la prescription de Stratonovich on a

E\left[\int_{a}^{b} X_t\, \mathrm dB_t\right]\neq 0

ce qui complique, de ce point de vue, certains calculs. Cependant l'utilisation de la prescription de Stratonovich ne choisit pas une direction du temps privilégiée contrairement à celle d'Itô ce qui implique que les processus stochastiques définis par l'intégrale de Stratonovich satisfont des équations différentielles stochastiques invariantes par renversement du temps. Pour cette raison, cette prescription est souvent utilisée en physique statistique.

Il faut noter cependant qu'il est possible de passer de l'une à l'autre des prescriptions en effectuant des changements de variables simples ce qui les rend équivalentes. Le choix de prescription est donc une question de convenance.

Processus usuels

Martingales exponentielles

Article connexe : martingale.

Intégrale de Wiener et intégrale stochastique

Soit Z le mouvement brownien standard défini sur lespace probabilisé (Ω,A,F,P) et σ un processus adapté à F. On suppose par ailleurs que σ vérifie :

E\left(\int_0^T \sigma_s^2 \mathrm ds\right) < + \infty.

Alors, lintégrale stochastique de σ par rapport à Z est la variable aléatoire :

\left(\int_0^T \sigma_s \mathrm dZ_s \right) = \lim_{N\to +\infty} \sum_{n=1}^N \sigma_{n-1} \left(Z_n - Z_{n-1}\right).

Lemme dItô

Article détaillé : Lemme d'Itô.

Soit x un processus stochastique tel qu'on ait dx = adt + bdz z est un processus de Wiener standard.

Alors d'après le lemme d'Itô, on a pour une fonction G = G(x,t)

\mathrm dG = \frac{\mathrm dG}{\mathrm dt} \mathrm dt + \frac{\mathrm dG}{\mathrm dx} \mathrm dx + \frac{1}{2} b^2 \frac{\mathrm d^2 G}{\mathrm dx^2} \mathrm dt

Equations différentielles stochastiques

Une équation différentielle stochastique (EDS) est la donnée dune équation du type dX = μ(X,t)dt + σ(X,t)dWt, X est un processus aléatoire inconnu, que lon appelle communément équation de diffusion. Intégrer lEDS, cest trouver lensemble des processus vérifiant la diffusion entiere.

Processus dOrnstein-Uhlenbeck

Le processus d'Ornstein-Uhlenbeck est un processus stochastique décrivant (entre autres) la vitesse d'une particule dans un fluide, en dimension 1.

On le définit comme étant la solution Xt de l'équation différentielle stochastique suivante :

\mathrm dX_t=\sqrt2\mathrm dB_t-X_t\mathrm dt,

Bt est un mouvement brownien standard, et avec X0 une variable aléatoire donnée. Le terme dBt traduit les nombreux chocs aléatoires subis par la particule, alors que le terme Xtdt représente la force de frottement subie par la particule.

La formule d'Itô appliquée au processus etXt nous donne :

\mathrm d({e^t}X_t)={e^t}{X_t}\mathrm dt+{e^t}(\sqrt{2}{\mathrm dB_t}-{X_t}\mathrm dt)={e^t}\sqrt{2}{\mathrm dB_t},

soit, sous forme intégrale :

X_t={X_0}e^{-t}+\sqrt{2}e^{-t}\int_0^t{e^s}\mathrm dB_s

Par exemple, si X0 vaut presque sûrement x, la loi de Xt est une loi gaussienne de moyenne xe t et de variance 1 e 2t, ce qui converge en loi quand t tend vers l'infini vers la loi gaussienne centrée réduite.

Problèmes de contrôle optimal

Méthodes de simulation

Méthode de Monte-Carlo

Les méthodes de Monte-Carlo reposent sur la Loi des grands nombres : en répétant un grand nombre de fois une expérience, de façon (théoriquement) indépendante, on obtient une approximation de plus en plus fiable de la vraie valeur de l'espérance du phénomène observé.

De telles méthodes sont notamment utilisées en finance pour la valorisation doptions pour lesquelles il nexiste pas de formule fermée, mais uniquement des approximations numériques.

Simulation par arbres recombinants

Articles connexes

Bibliographie

  • Nathalie Bartoli et Pierre Del Moral, Simulation & algorithmes stochastiques, Cépaduès, 2001 (ISBN 2-85428-560-3)
  • Mario Lefebvre, Processus stochastiques appliqués, Hermann, 2006 (ISBN 2-7056-6561-7)
  • Nathalie Bartoli et Pierre Del Moral, Calcul stochastique et modèles de diffusions, Dunod, 2006 (ISBN 2-10-050135-6)
  • Bassel Solaiman, Processus stochastiques pour l'ingénieur, Presses Polytechniques et Universitaires Romandes, 2006 (ISBN 2-88074-668-X)

Notes


  • Portail des probabilités et des statistiques Portail des probabilités et des statistiques
Ce document provient de « Calcul stochastique ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Calcul sto de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Base STO-nG — Une base STO nG est une base utilisée en chimie numérique, c est à dire un ensemble de fonctions utilisées afin de créer des orbitales moléculaires. Il s agit d une base minimale pour laquelle n orbitales gaussiennes primitives sont ajustées à… …   Wikipédia en Français

  • Base (Chimie Quantique) — Pour les articles homonymes, voir Base. Une base en chimie quantique est un ensemble de fonctions utilisées afin de créer des orbitales moléculaires, qui sont développées comme combinaisons linéaires de telles fonctions avec des poids ou… …   Wikipédia en Français

  • Base (chimie quantique) — Pour les articles homonymes, voir Base. Une base en chimie quantique est un ensemble de fonctions utilisées afin de modéliser des orbitales moléculaires, qui sont développées comme combinaisons linéaires de telles fonctions avec des poids ou… …   Wikipédia en Français

  • Small-Scale Experimental Machine — Réplique de la Small Scale Experimental Machine (SSEM) au musée des siences et de l industrie de Manchester …   Wikipédia en Français

  • Bull : De La Mécanographie À L'électronique (1931-1964) — Article principal : Bull. Jusqu en 1935, Bull la Compagnie des Machines Bull, machines à statistiques et de comptabilité, connaît une phase difficile d installation. Puis elle entre dans une longue période de stabilité institutionnelle et de …   Wikipédia en Français

  • Bull : De la mecanographie a l'electronique (1931-1964) — Bull : De la mécanographie à l électronique (1931 1964) Article principal : Bull. Jusqu en 1935, Bull la Compagnie des Machines Bull, machines à statistiques et de comptabilité, connaît une phase difficile d installation. Puis elle entre… …   Wikipédia en Français

  • Bull : De la mécanographie à l'électronique (1931-1964) — Article principal : Bull. Jusqu en 1935, Bull la Compagnie des Machines Bull, machines à statistiques et de comptabilité, connaît une phase difficile d installation. Puis elle entre dans une longue période de stabilité institutionnelle et de …   Wikipédia en Français

  • Bull : de la mécanographie à l'électronique (1931-1964) — Article principal : Bull. Jusqu en 1935, Bull la Compagnie des Machines Bull, machines à statistiques et de comptabilité, connaît une phase difficile d installation. Puis elle entre dans une longue période de stabilité institutionnelle et de …   Wikipédia en Français

  • TI-Basic — est le nom non officiel du langage de programmation des calculatrices graphiques Texas Instruments. Ce terme n est jamais utilisé par Texas Instruments dans les documentations officielles. Par sa philosophie et ses capacités, ce langage se… …   Wikipédia en Français

  • TIBasic — TI Basic TI Basic est le nom non officiel du langage de programmation des calculatrices graphiques Texas Instruments. Ce terme n est jamais utilisé par Texas Instruments dans les documentations officielles. Par sa philosophie et ses capacités, ce …   Wikipédia en Français

Share the article and excerpts

Direct link
https://fr-academic.com/dic.nsf/frwiki/263609 Do a right-click on the link above
and select “Copy Link”