- Polynômes de Zernike
-
Les polynômes de Zernike sont une série de polynômes qui sont orthogonaux sur le disque unité. Ils portent le nom de Frits Zernike ; ils jouent un rôle important en optique géométrique.
Sommaire
Définition des polynômes
Les polynômes de Zernike peuvent se décomposer en fonctions paire et impaire. Les fonctions paires sont :
et les fonctions impaires sont :
où m et n sont des nombres entiers naturels non nuls, avec n≥m, φ est l'angle d'azimuth exprimé en radians, et ρ est la distance radiale normalisée. Les polynômes radiaux Rmn sont définis tels que :
ou
pour n − m pair, et sont égaux à 0 pour n − m impair.
Pour m = 0, le polynôme se réduit à Rn0(ρ).
Exemples
Les premiers polynômes de Zernike sont :
Annexes
Articles connexes
Liens externes
- (en) The Extended Nijboer-Zernike website.
- (en) Cross-expansions in terms of powers and Jacobi Polynomials.
Bibliographie
- Born and Wolf, "Principles of Optics", Oxford: Pergamon, 1970.
- Eric W. Weisstein et al., "Zernike Polynomial", at MathWorld.
- C. E. Campbell, "Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed", J. Opt. Soc. Am. A 20 (2003) 209.
- C. Cerjan, "The Zernike-Bessel representation and its application to Hankel transforms", J. Opt. Soc. Am. A 24 (2007) 1609.
- S. A. Comastri, L. I. Perez, G. D. Perez, G. Martin and K. Bastida Cerjan, "Zernike expansion coefficients: rescaling and decentering for different pupils and evaluation of corneal aberrations", J. Opt. A: Pure Appl. Opt. 9 (2007) 209.
- G. Conforti, "Zernike aberration coefficients from Seidel and higher-order power-series coefficients", Opt. Lett. 8 (1983) 407.
- G-m. Dai and V. N. Mahajan, "Zernike annular polynomials and atmospheric turbulence", J. Opt. Soc. Am. A 24 (2007) 139.
- G-m. Dai, "Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula", J. Opt. Soc. Am. A 23 (2006) 539.
- J. A. Díaz, J. Fernández-Dorado, C. Pizarro, and J. Arasa, "Zernike Coefficients for Concentric, Circular, Scaled Pupils: An Equivalent Expression," Journal of Modern Optics, 56(1), 2009 pp. 149–155.
- J. A. Díaz and J. Fernández-Dorado,"Zernike Coefficients for Concentric, Circular, Scaled Pupils" from The Wolfram Demonstrations Project.
- J. Herrmann, "Cross coupling and aliasing in modal wave-front estimation", J. Opt. Soc. Am. 71 (1981) 989.
- P. H. Hu, J. Stone and T. Stanley, "Application of Zernike polynomials to atmospheric propagation problems", J. Opt. Soc. Am. A 6 (1989) 1595.
- E. C. Kintner, "On the mathematical properties of the Zernike Polynomials", Opt. Acta 23 (1976) 679.
- G. N. Lawrence and W. W. Chow, "Wave-front tomography by Zernike Polynomial decomposition", Opt. Lett. 9 (1984) 287.
- L. Lundstrom and P. Unsbo, "Transformation of Zernike coefficients: scaled, translated and rotate wavefronts with circular and elliptical pupils", J. Opt. Soc. Am. A 24 (2007) 569.
- V. N. Mahajan, "Zernike annular polynomials for imaging systems with annular pupils", J. Opt. Soc. Am. 71 (1981) 75.
- R. J. Mathar, "Third Order Newton's Method for Zernike Polynomial Zeros", arXiv:math.NA/0705.1329.
- R. J. Mathar, "Zernike Basis to Cartesian Transformations", arXiv:0809.2368 math-ph.
- R. J. Noll, "Zernike polynomials and atmospheric turbulence", J. Opt. Soc. Am. 66 (1976) 207.
- A. Prata Jr and W. V. T. Rusch, "Algorithm for computation of Zernike polynomials expansion coefficients", Appl. Opt. 28 (1989) 749.
- J. Schwiegerling, "Scaling Zernike expansion coefficients to different pupil sizes", J. Opt. Soc. Am. A 19 (2002) 1937.
- C. J. R. Sheppard, S. Campbell and M. D. Hirschhorn, "Zernike expansion of separable functions in Cartesian coordinates", Appl. Opt. 43 (2004) 3963.
- H. Shu, L. Luo, G. Han and J.-L. Coatrieux, "General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes ", J. Opt. Soc. Am. A 23 (2006) 1960.
- W. Swantner and W. W. Chow, "Gram-Schmidt orthogonalization of Zernike polynomials for general aperture shapes", Appl. Opt. 33 (1994) 1832.
- W. J. Tango, "The circle polynomials of Zernike and their application in optics", Appl. Phys. A 13 (1977) 327.
- R. K. Tyson, "Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficiets", Opt. Lett. 7 (1982) 262.
- J. Y. Wang and D. E. Silva, "Wave-front interpretation with Zernike Polynomials", Appl. Opt. 19 (1980) 1510.
- R. Barakat, "Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials", J. Opt. Soc. Am. 70 (1980) 739.
- A. B. Bhatia and E. Wolf, "The Zernike circle polynomials occurring in diffraction theory", Proc. Phys. Soc. B 65 (1952) 909.
- T. A. ten Brummelaar, Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike, Opt. Commun. 132 (1996) 329.
- M. Novotni, R. Klein, "3D Zernike Descriptors for Content Based Shape Retrieval", in proceedings of The 8th ACM Symposium on Solid Modeling and Applications June 2003.
- M. Novotni, R. Klein, "Shape retrieval using 3D Zernike descriptors", in Computer Aided Design, Vol. 36, No. 11, pages 1047-1062, 2004.
Catégories :- Polynôme remarquable
- Optique
Wikimedia Foundation. 2010.