Graphe de Folkman

Graphe de Folkman
Graphe de Folkman
Représentation du graphe de Folkman
Représentation du graphe de Folkman
Nombre de sommets 20
Nombre d'arêtes 40
Distribution des degrés 4-régulier
Rayon 3
Diamètre 4
Maille 4
Nombre chromatique 2
Indice chromatique 4
Propriétés Régulier
Eulérien
Hamiltonien
Biparti
Parfait
Semi-symétrique

Le graphe de Folkman est, en théorie des graphes, un graphe 4-régulier possédant 20 sommets et 40 arêtes.

Sommaire

Propriétés

Propriétés générales

Le diamètre du graphe de Folkman, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 3 et sa maille, la longueur de son plus court cycle, est 4. Il s'agit d'un graphe 4-sommet-connexe et d'un graphe 4-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 4 sommets ou de 4 arêtes.

Coloriage

Le nombre chromatique du graphe de Folkman est 2. C'est-à-dire qu'il est possible de le colorer avec 2 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes. Ce nombre est minimal.

L'indice chromatique du graphe de Folkman est 4. Il existe donc une 4-coloration des arêtes du graphe tels que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

Le groupe d'automorphismes du graphe de Folkman est agit transitivement sur l'ensemble de ses arêtes du graphe, faisant de lui un graphe arêtes-transitif, c'est-à-dire un graphe dont toutes les arêtes jouent exactement le même rôle. Cependant il n'agit pas transitivement sur l'ensemble de ses sommets. Le graphe de Folkman étant régulier, il est un exemple de graphe semi-symétrique : un graphe régulier arête-transitif mais pas sommet-transitifs. C'est le plus petit graphe vérifiant cette propriété.

Le polynôme caractéristique du graphe de Folkman est : (x − 4)x10(x + 4)(x2 − 6)4.

Voir aussi

Liens internes

Liens externes

Références



Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Graphe de Folkman de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Edge coloring — A 3 edge coloring of the Desargues graph. In graph theory, an edge coloring of a graph is an assignment of “colors” to the edges of the graph so that no two adjacent edges have the same color. For example, the figure to the right shows an edge… …   Wikipedia

  • Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

  • Liste Des Théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

  • Liste des theoremes — Liste des théorèmes Liste des théorèmes par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le… …   Wikipédia en Français

  • Liste des théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”