Axiome d'édification

Axiome d'édification

Axiome de fondation

L'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922), et John von Neumann (1925)[1], il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent intuitivement vérifié.

L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite on choisit de prendre ZF et ZFC sans axiome de fondation.

Sommaire

Définition

L'axiome de fondation stipule que

pour tout ensemble x non vide, il existe un ensemble y appartenant à x et n'ayant aucun élément en commun avec x,

en écriture symbolique

x[x ≠ ∅ ⇒ ∃y(yx et yx = ∅)]

Par exemple, si x a pour élément l'ensemble vide, ce dernier conviendra pour y. C'est même le seul choix possible si x est un ensemble transitif non vide (qui a donc forcément l'ensemble vide pour élément).

Dans un univers de la théorie des ensembles qui satisfait l'axiome de fondation, les ensembles décrits par la théorie axiomatique reflètent davantage l'image intuitive :

  • aucun ensemble n'est élément de lui-même : on ne peut avoir x ∈ x, puisque sinon le singleton {x} fournirait un contre-exemple à l'axiome de fondation : {x} ∩ x = {x} ;
  • plus généralement, la relation d'appartenance n'a pas de cycle : on ne peut avoir x0x1 et x1x2 et …, xnx0, puisque sinon {x0, …, xn} contredirait l'axiome de fondation ;
  • plus généralement encore, on ne peut avoir de suite infinie d'ensembles tels que x1x0, x2x1, …, xn+1xn, …, puisque l'ensemble image de cette suite, {xn | n ∈ N}, contredirait l'axiome de fondation.

Cette dernière propriété signifie que le prédicat à deux variables libres « x ∈ y » est bien fondé. Elle est équivalente à l'axiome de fondation si l'axiome du choix dépendant est vérifié. Ce dernier est un axiome du choix très faible qui permet de construire des suites et que le mathématicien, non spécialiste de logique mathématique, suppose intuitivement toujours vérifié, souvent sans le savoir.

Axiome de fondation et paradoxe de Russell

En présence de l'axiome de fondation, on n'a jamais « x ∈ x ». Mais le rapport entre le paradoxe de Russell et l'axiome de fondation n'est qu'apparent. Ce dernier n'est en aucun cas une solution au paradoxe de Russell (apportée en théorie des ensembles par des restrictions au schéma d'axiomes de compréhension général). En effet le paradoxe de Russell utilise seulement la possibilité d'écrire « x ∈ x ». En présence de l'axiome de fondation la classe définie par x ∉ x est simplement l'univers de tous les ensembles, qui doit de toute façon être une classe propre dans une théorie des ensembles cohérente dès que celle-ci contient le schéma d'axiomes de compréhension (restreint).

Les théories des ensembles ZFC, ZFC avec axiome de fondation et ZFC avec la négation de l'axiome de fondation, sont équi-cohérentes (voir la suite).

La hiérarchie cumulative

La hiérarchie cumulative de von Neumann est définie par induction sur la classe de tous les ordinaux, en commençant par l'ensemble vide et en itérant l'ensemble des parties, c’est-à-dire que (avec P(E) désignant l'ensemble des parties de E) :

  • Vα = ∪β<α P(Vβ)
et donc :
  • V0 = ∅
  • Vα+1 = P(Vα)
  • Vα = ∪β<α Vβ   pour tout ordinal limite α .

La classe (propre !) V est obtenue par réunion des Vα pour tous les ordinaux. Si « Ord » désigne la classe de tous les ordinaux :

V(x) ≡ ∃ α (Ord(α) et xVα).

La classe V définit, à l'intérieur de tout modèle de la théorie des ensembles ZF ou ZFC, en gardant la même relation d'appartenance, un modèle de la théorie ZF (ZFC si l'univers initial est modèle de ZFC) qui satisfait AF, l'axiome de fondation. Ceci montre la cohérence relative de ZF+AF vis à vis de ZF, de même pour ZFC. Dit autrement, la négation de AF, l'axiome de fondation, n'est pas démontrable dans ZFC (et donc ZF).

On montre que, de plus, l'axiome de fondation est satisfait par un modèle de ZF si et seulement si ce modèle est réduit à la classe V. Dit autrement, l'axiome de fondation équivaut à la formule ∀x V(x). En présence de l'axiome de fondation, on peut donc définir le rang ordinal d'un ensemble a, qui est le plus petit ordinal α tel que aVα.

Indépendance de l'axiome de fondation

L'axiome de fondation n'est pas démontrable à partir des axiomes de ZFC (bien sûr sans fondation). On montre très simplement, en modifiant la relation d'appartenance à l'aide d'une « permutation » sur l'univers de tous les ensembles[2], que si la théorie ZFC est cohérente, par exemple la théorie ZFC plus l'existence d'un ensemble a tel que a = {a} est cohérente.

Voir aussi

Notes

  1. Akihiro Kanamori (2008), Set Theory from Cantor to Cohen, to appear in: Andrew Irvine and John H. Woods (editors), The Handbook of the Philosophy of Science, volume 4, Mathematics, Cambridge University Press 2008.
  2. méthode due à Specker

Références

  • Jean-Louis Krivine, « Théorie des Ensembles », Paris, éditions Cassini, collection Nouvelle Bibliothèque Mathématique, 1998, ISBN 2-84225-014-1
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Axiome de fondation ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Axiome d'édification de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • LOGIQUE MATHÉMATIQUE — La logique au sens étroit du terme, c’est à dire la logique formelle par opposition à l’épistémologie ou à la théorie de la connaissance, se propose de donner une théorie de l’inférence formellement valide. Elle considère comme valide toute… …   Encyclopédie Universelle

  • AXIOMATIQUE — La méthode axiomatique est un mode d’exposition des sciences exactes fondé sur des propositions admises sans démonstration et nettement formulées et des raisonnements rigoureux. On se limitera ici à quelques indications méthodologiques et… …   Encyclopédie Universelle

  • fondation — [ fɔ̃dasjɔ̃ ] n. f. • XIIIe; bas lat. fundatio, de fundare → fonder 1 ♦ (Généralt au plur.) Ensemble des travaux et ouvrages destinés à assurer à la base la stabilité d une construction. ⇒ infrastructure. Faire, creuser, jeter les fondations d un …   Encyclopédie Universelle

  • MATIÈRE — Pour l’action comme pour la connaissance, la «matière» est toujours première. Première dans ses mixtes et ses confusions, lorsqu’elle résiste aux projets de façonnage; première dans sa présence originelle, dès qu’apparut le projet d’une… …   Encyclopédie Universelle

  • RUSSELL (B.) — La longue vie qui fut accordée à Russell, l’alacrité avec laquelle il a supporté celle ci ont fait de lui un personnage hors série. Toujours en quête de renouvellement, il était, par l’ampleur de sa réflexion et la franchise de son action morale… …   Encyclopédie Universelle

  • ÉTATS-UNIS - La littérature américaine — Le goût qu’ont les lecteurs européens pour la littérature des États Unis n’est pas une mode passagère. On a pu croire que les troupes de la Libération avaient apporté Hemingway dans leurs bagages et que l’âge du roman américain ne durerait pas.… …   Encyclopédie Universelle

  • BOLCHEVISME — Le terme de bolchevisme, dérivé du substantif abstrait bolchinstvo (majorité), désigne la théorie révolutionnaire de Lénine et la praxis du Parti bolchevique dont celui ci fut le fondateur, le dirigeant et le stratège. Les origines et l’évolution …   Encyclopédie Universelle

  • Comtat-Venaissin — Première carte du Comtat Venaissin par Stephano Ghebellino (vers 1580) …   Wikipédia en Français

  • Comtat-Vénessin — Comtat Venaissin Première carte du Comtat Venaissin par Stephano Ghebellino (vers 1580) …   Wikipédia en Français

  • Comtat Venaissin — 44°5′N 5°0′E / 44.083, 5 Comtat Venaissin Coumtat Venessin …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”