Theoreme de l'ideal principal
- Theoreme de l'ideal principal
-
Théorème de l'idéal principal
Soit K un corps de nombres. Les extensions abéliennes, et les extensions non ramifiées, sont stables par compositum. Il existe donc une extension abélienne non ramifiée maximale de K, elle est appelée corps de Hilbert de K.
Le théorème de l'idéal principal assure que tout idéal de K, vu comme un idéal de cette extension, est principal. C'est un résultat qu'il est possible de voir comme une conséquence de la théorie générale des corps de classes.
- Portail des mathématiques
Catégories : Théorème de mathématiques | Théorie des corps de classes
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Theoreme de l'ideal principal de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
Théorème de l'idéal principal — Ne doit pas être confondu avec Théorème des idéaux principaux de Krull. En mathématiques, le théorème de l idéal principal en théorie des corps de classes, assure que tout idéal de l anneau des entiers d un corps de nombres K, vu comme… … Wikipédia en Français
Théorème des idéaux principaux de Krull — Ne doit pas être confondu avec le théorème de l idéal principal en théorie des corps de classes, ni avec le théorème de Krull sur l existence d idéaux maximaux. En algèbre commutative, le théorème des idéaux principaux de Krull (Krulls… … Wikipédia en Français
Idéal de l'anneau des entiers d'un corps quadratique — En mathématiques et plus précisément en théorie algébrique des nombres, l anneau des entiers d un corps quadratique ressemble à certains égards à celui des entiers relatifs. Certains d entre eux sont euclidiens comme celui des entiers de Gauss d… … Wikipédia en Français
Idéal fractionnaire — Richard Dedekind donne en 1876 la définition d idéal fractionnaire. En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d un idéal. Ce concept doit son origine à la théorie… … Wikipédia en Français
Idéal — Pour les articles homonymes, voir Idéal (homonymie). En mathématiques, et plus particulièrement en algèbre, un idéal est un sous ensemble remarquable d un anneau. Par certains égards, les idéaux s apparentent aux sous espaces vectoriels ce sont… … Wikipédia en Français
Ideal premier — Idéal premier Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal premier est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau commutatif unitaire est dit premier… … Wikipédia en Français
Idéal Premier — Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal premier est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau commutatif unitaire est dit premier si, et s … Wikipédia en Français
Theoreme d'Artin-Wedderburn — Théorème d Artin Wedderburn En mathématiques et plus particulièrement en algèbre le Théorème d Artin Wedderburn traite de la structure d algèbre ou d anneau semi simple. Il correspond au théorème fondamental des structures semi simples et permet… … Wikipédia en Français
Théorème d'artin-wedderburn — En mathématiques et plus particulièrement en algèbre le Théorème d Artin Wedderburn traite de la structure d algèbre ou d anneau semi simple. Il correspond au théorème fondamental des structures semi simples et permet d expliciter exactement leur … Wikipédia en Français
Theoreme des restes chinois — Théorème des restes chinois Le théorème des restes chinois est un résultat d arithmétique modulaire traitant de résolution de systèmes de congruences. Ce résultat établi initialement sur Z/nZ se généralise en théorie des anneaux. Ce théorème est… … Wikipédia en Français