Système masse-ressort

Système masse-ressort

Un système masse-ressort est un système mécanique à un degré de liberté. Il est constitué par une masse accrochée à un ressort contrainte de se déplacer dans une seule direction. Son mouvement est dû à trois forces :

  • une force de rappel FR,
  • une force d'amortissement FA,
  • une force extérieure FE.

Le système masse-ressort est un sujet d'étude simple dans le cadre des oscillateurs harmoniques.

Sommaire

Oscillations rectilignes d'une masse soumise à l'action d'un ressort

Mouvement horizontal
Oscillation verticale

On peut mettre en oscillation une masse soumise à l'action d'un ressort. Ces oscillations peuvent être, suivant les cas, des oscillations verticales ou des oscillations horizontales (en utilisant un dispositif permettant de minimiser les frottements sur le support).

Dans les deux cas, les oscillations sont harmoniques : la fonction du temps [x(t)] de la position de la masse de part et d'autre de la position d'équilibre (statique) est une fonction sinus. Dans le cas de l'oscillateur vertical, l'effet de la pesanteur n'introduit qu'une translation de la position d'équilibre statique. La relation déduite de l'application du théorème du centre d'inertie peut s'écrire :

\frac{d^2x}{dt^2}+\omega_0^2 x = 0, avec \omega_0 = \sqrt{\frac{k}{m}}

ω0 est appelée pulsation propre de l'oscillateur harmonique. Les solutions de l'équation différentielle sont de la forme x = x0sin(ω0t + φ), ce qui est caractéristique d'un oscillateur harmonique.

La période est indépendante de l’amplitude (isochronisme des oscillations) : elle ne dépend que de l'inertie du système (masse m) et de la caractéristique de la force de rappel (constante de raideur k du ressort) :  T = 2\pi\cdot\sqrt\frac{m}{k}

Remarque : cet oscillateur est soumis à la conservation de l'énergie mécanique : celle-ci est de la forme  \frac{1}{2}m v^2 + \frac{1}{2} k x^2 = E_0
En dérivant membre à membre l'équation par rapport au temps on retrouve l'équation différentielle précédente.

Amélioration

Ce qui précède est valable si la masse du ressort est négligeable par rapport à celle de la masse qui oscille. L'expérience montre que la période est plus proche de :

 T = 2\pi\cdot\sqrt\frac{m + \mu/3}{k}

 {\mu\;/3} = le tiers de la masse du ressort ;
 {m\;} = la masse suspendue au ressort ;
 \ ~ {k\;} = la constante élastique ou raideur du ressort.

Autre amélioration

Ceci est de nouveau une approximation. Une étude complète se trouve dans les liens externes. Chercher : « Étude de la période d'oscillation d'un ressort ».
On montre que la période correcte d'oscillation est :

 T = \frac{2\pi}{\Omega} \cdot \sqrt \frac{\mu}{k}

 \quad \Omega\; \quad est défini par la relation :  \quad \Omega \cdot \tan ( \Omega ) = \frac{\mu}{m}
 {\mu\;} = la masse du ressort ;
 {m\;} = la masse suspendue au ressort ;
 \ ~ {k\;} = la constante élastique ou raideur du ressort.

Une manière de calculer  \quad \Omega\quad est d'itérer :  \quad \Omega = \arctan \left(\frac{\mu}{m \cdot \Omega}\right) en commençant par :  \quad \Omega = \sqrt \frac{\mu}{m + \mu / 3}

Frottements

Voir aussi

Articles connexes

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Système masse-ressort de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Systeme masse-ressort — Système masse ressort Un système masse ressort est un système mécanique à un degré de liberté. Il est constitué par une masse accrochée à un ressort contrainte de se déplacer dans une seule direction. Son mouvement est dû à trois forces :… …   Wikipédia en Français

  • Systeme oscillant a un degre de liberte — Système oscillant à un degré de liberté Les phénomènes physiques dépendant du temps sont généralement décrits au départ par des équations différentielles. Dans le cas le plus simple, il y a une seule grandeur qui varie et on parle de système à un …   Wikipédia en Français

  • Ressort (mécanique élémentaire) — Ressort de traction (dessin) …   Wikipédia en Français

  • Ressort ideal — Ressort (mécanique élémentaire) Ressort de traction (dessin) …   Wikipédia en Français

  • Ressort idéal — Ressort (mécanique élémentaire) Ressort de traction (dessin) …   Wikipédia en Français

  • Système oscillant à un degré de liberté — Les phénomènes physiques dépendant du temps sont généralement décrits au départ par des équations différentielles. Dans le cas le plus simple, il y a une seule grandeur qui varie et on parle de système à un degré de liberté, la plupart du temps… …   Wikipédia en Français

  • Ressort — Pour les articles homonymes, voir Ressort (homonymie). Un ressort est un organe ou pièce mécanique qui utilise les propriétés élastiques de certains matériaux pour absorber de l énergie mécanique, produire un mouvement, ou exercer un effort ou un …   Wikipédia en Français

  • Système de freinage (bicyclette) — Traduction à relire Bicycle brake systems → …   Wikipédia en Français

  • ressort — 1. (re sor ; le t ne se lie pas ; un resor élastique ; au pluriel, l s ne se lie pas : des re sor élastiques ; cependant quelques uns la lient : des re sor z élastiques) s. m. 1°   Propriété naturelle qu ont certains corps de se remettre en l… …   Dictionnaire de la Langue Française d'Émile Littré

  • Système éducatif français — Système éducatif en France Organisme de tutelle Ministre de l’Éducation nationale Ministère de l’Éducation nationale Ministère de l’Enseignement supérieur et de la Recherche Luc Chatel Budget 6 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”