- Suite de lucas
-
Suite de Lucas
En mathématiques, une suite de Lucas est une généralisation de la suite de Fibonacci et des nombres de Lucas. Les suites de Lucas furent étudiées en premier par le mathématicien français Édouard Lucas.
Sommaire
Relations de récurrence
Soient deux entiers donnés P et Q qui satisfont
les suites de Lucas et sont définies par les relations de récurrence linéaire
et
Terme général
Selon la méthode de calcul sur des suites à récurrence linéaire, il suffit de chercher les racines du polynôme caractéristique
Puisque P2 − 4Q > 0, ce polynôme possède deux racines qui sont a et b. Alors et peuvent aussi être définies en fonction de a et b par
à partir desquelles nous pouvons extraire les relations
Autres relations
Les nombres dans les suites de Lucas satisfont aux relations qui sont analogues à celles entre les nombres de Fibonacci et les nombres de Lucas. Par exemple :
Cas particuliers
Les suites de Lucas ont des noms spécifiques pour certaines valeurs de P et Q :
- est appelée suite de Fibonacci, et ses valeurs sont les nombres de Fibonacci.
- est une suite de Lucas, dont les valeurs sont les nombres de Lucas.
- est appelée suite de Pell et ses valeurs sont les nombres de Pell.
- est appelée suite de Jacobsthal et ses valeurs sont les nombres de Jacobsthal.
Applications
- LUC est un cryptosystème basé sur les suites de Lucas.
Catégorie : Suite d'entiers
Wikimedia Foundation. 2010.