- Structure du globe
-
Structure interne de la Terre
La structure interne de la Terre est répartie en plusieurs enveloppes successives, dont les principales sont la croûte terrestre, le manteau et le noyau. Cette représentation est très simplifiée puisque ces enveloppes peuvent être elles-mêmes décomposées. Pour repérer ces couches, les sismologues utilisent les ondes sismiques, et une loi : Dès que la vitesse d'une onde sismique change brutalement et de façon importante, c'est qu'il y a changement de milieu, donc de couche. Cette méthode a permis, par exemple, de déterminer l'état de la matière à des profondeurs que l'homme ne peut atteindre. (manteau profond - noyau)
Ces couches sont délimitées par les discontinuités comme la Discontinuité de Mohorovic, celle de Gutenberg, nommée d'après le sismologue Beno Gutenberg, ou bien celle de Lehmann. Pour comprendre cette constitution, il faut remonter à la formation de la Terre, elle s'est formée par accrétion de météorites et lors de cette formation, les différentes couches se sont mises en place à cause de la masse volumique par exemple de ses constituants.
Sommaire
Quelques jalons historiques
De l’Antiquité au XVIIIe siècle
Depuis l’Antiquité nombreux sont ceux qui se sont illustrés dans leurs tentatives d’explication de la constitution interne de notre globe. Certains de ces intellectuels ont cherché à coller à la vision du terrain (relief, volcans, tremblements de terre), d’autres ont voulu aussi incorporer à leur modèle une explication des textes bibliques (le déluge). Viendra ensuite la période où les hypothèses seront étayées par des expérimentations : ce sera l’ère de la géophysique. On trouve donc dans cette galerie de portraits : des mathématiciens, des philosophes, des théologiens puis plus tardivement des naturalistes, des physiciens et des géologues. Nous ne retiendrons ici que les plus connus.
Pour Aristote (IVe siècle av. J.-C.), notre planète est constituée de terre et de roche entourée d’eau puis d’air. Viennent ensuite une couche de feu et les astres. Jusqu’à Copernic cette vision évoluera peu, mais au milieu du XVIIe siècle un foisonnement d’idées nouvelles apparaît.
En 1644, la Terre présentée par Descartes dans « Principes de philosophie » est un ancien soleil qui a gardé un noyau de type solaire mais dont les couches externes ont évolué. Plusieurs couches se succèdent à partir du centre : roche, eau, air puis enfin une croûte extérieure en équilibre sur cet air. Cette croûte brisée a formé les reliefs et laissé passer l’eau venant des profondeurs qui a formé mers et océans.
A la même époque, Athanasius Kircher postule lui aussi que le globe terrestre est un astre refroidi mais qu'il contient sous la croûte une matière en fusion qui s’échappe parfois du centre par les volcans. A la fin du XVIIe et au cours du XVIIIe siècle, une grande quantité d’hypothèses seront émises :
- Terre issue d’une ancienne comète : William Whiston (1667 - 1752)
- Terre ayant été composée d’un mélange fluide qui s’est déposé par gravité au cours du temps : John Woodward (1665 - 1728) et Thomas Burnet (1635 - 1715)
- Terre creuse à plusieurs coques concentriques et noyau aimanté séparés par du vide : Edmund Halley (1656 - 1742)
- Terre totalement creuse où la fine croûte externe est en équilibre entre gravité et force centrifuge : Henri Gautier (1660 - 1737)
Du XVIIIe au XXe siècle
Avec l’essor de la géologie, les théories vont devoir coller à l’observation et aux mesures géophysiques. Le peu d’influence des masses montagneuses sur la gravité locale tend ainsi à prouver que la Terre n’est pas creuse.
Le léger aplatissement du globe aux pôles et la nature ignée de certaines roches font dire à Georges de Buffon que la Terre a été en fusion à son origine. La mesure de l’augmentation régulière de la température avec la profondeur dans les mines (1°C pour 25 mètres) incite Joseph Fournier et Pierre Cordier (1777 - 1861) à extrapoler et déduire que le centre de notre planète est en fusion à une température de plusieurs milliers de degrés. L’origine de cette température sera longuement débattue : reste de la chaleur originelle sur un globe en cours de refroidissement ou élévation de la température due à des réactions chimiques ou nucléaires internes ? D’ailleurs, cette chaleur ne serait-elle pas suffisamment intense pour que toute la matière interne soit gazeuse au-delà d’une certaine profondeur ?
Pour William Hopkins, la variation du point de fusion des roches en fonction de la pression fait une nouvelle fois pencher la balance en faveur d’un noyau solide. Le niveau très faible des mouvements du sol liés à la marée (évalué par comparaison avec la mesure précise des marées océaniques) plaide, selon (Lord Kelvin), pour un globe aux propriétés d’un solide élastique et non pas d’un fluide.
L’analyse de la composition des roches terrestres et météoritiques, ainsi que la mesure de la densité moyenne du globe (5,5) influent sur plusieurs modèles où une fine croûte légère de silicates recouvre un noyau métallique volumineux plus dense. Enfin, l’analyse des données sismologiques qui s’avéreront de plus en plus précises, vont permettre d’établir le modèle actuel.
Les méthodes d’investigation
Investigations directes
Exploration humaine
La spéléologie, activité aux multiples facettes, ne se prête guère, même dans sa composante sportive, à l’établissement de records. Longtemps la cote –1 000 ne fut qu’un rêve que la technologie ne permettait pas de concrétiser. C’est en 1956 au Gouffre Berger, dans le massif du Vercors (Isère), que cette profondeur mythique fut atteinte pour la première fois. En 2005, la profondeur spectaculaire des –2 000 mètres a été dépassée par des spéléologues à Krubera-Voronja (ex gouffre Voronja), dans le Caucase occidental (Abkhazie).
Par ailleurs, la variété des terrains explorés dans les mines est beaucoup plus importante que les étendues de roches sédimentaires parcourues par les spéléologues et les terrains exploités sont bien plus anciens. Les mineurs y côtoient quotidiennement le phénomène d’élévation de la température qui dès le XVIIIe siècle influera sur les hypothèses d’un globe au cœur en fusion. Quoi qu’il en soit, même les mines les plus profondes du monde (~3 500m pour la Western Deep Levels d'Afrique du Sud en 2002) ne font qu’effleurer l’écorce terrestre.
Qu’est-ce qui se cache donc vraiment derrière les trésors d’imagination de Jules Verne et son « Voyage au centre de la Terre » ? Sans l’apport de méthodes d’exploration indirecte, l'homme serait resté totalement ignorant du contenu profond du globe au-delà des quelques deux ou trois premiers kilomètres.
Les forages profonds
L’objectif des forages profonds tels celui du programme KTB (Kontinental Tiefbohrprogramm der Bundesrepublik) qui a atteint 9 800 mètres sous l’Allemagne ou celui de 13 kilomètres dans la péninsule de Kola (Russie), est de mieux connaître la lithosphère et d’atteindre la zone de transition entre celle-ci et le manteau supérieur : le Moho.
Si ces forages ont permis de confirmer la structure et la composition de la croûte, ou de tracer des profils sismiques régionaux, elles n’ont malheureusement pas permis d’atteindre à ce jour la couche sous-jacente tant convoitée. On a pu ainsi mesurer par exemple que la température des roches atteint environ 300 °C à 10 kilomètres de profondeur.
Comme la croûte océanique est plus mince que les plaques continentales, plusieurs projets ont vu le jour pour tenter une percée à ce niveau : MOHOLE puis JOIDES aux USA, et programmes internationaux IPOD ou ODP / DSDP. Hélas, aucun navire n’a encore réussi à forer jusqu’à la discontinuité de Mohorovicic.
L’étude des météorites
Comprendre comment les couches successives de la Terre se sont progressivement différenciées serait grandement facilité par la connaissance de la composition exacte du matériau primitif qui lui a donné naissance. Les éléments absolument indispensables à la bonne formule sont le fer, le nickel et les silicates. On retrouve ces éléments (et plusieurs autres) dans un type de météorites appelé chondrites. Elles contiennent des petites zones sphériques de silicates solidifiés après fusion, les chondres, dont le nom est à l’origine de l’appellation de ces météorites.
Certaines d’entre elles comme la chondrite Allende contiennent un mélange de fer métallique et d’oxyde de fer ainsi qu’une grande quantité de carbone ; d’autres comme la chondrite d’Indarch, du fer métallique et un silicate de magnésium (MgSiO3) : l’enstatite, extrêmement fréquent dans le manteau terrestre. D’autres chondrites, plus primitives, montrent du fer totalement oxydé, ce sont les météorites carbonées CI : elles sont très proches par leur composition de la nébuleuse gazeuse qui donna naissance au système solaire il y a environ 4,57 milliards d’années et à la Terre il y a 4,45 milliards d’années.
Parmi toutes ces chondrites, seules celles contenant 45% d’enstatite présentent une composition chimique et isotopique en adéquation avec la densité et la nature profonde actuelle de la Terre (plusieurs couches de silicates légers et un noyau où ont migré les métaux plus lourds). Ces météorites ont une taille bien trop faible et ne sont donc pas différenciées : leurs éléments y sont restés répartis de façon relativement homogène.
Investigations indirectes (géophysique)
La tomographie sismique
C’est l’analyse des enregistrements obtenus grâce aux sismographes qui permettra de renouveler totalement le modèle de la Terre au cours du XXe siècle. Le principe est relativement simple : suite à un séisme on détermine la position de son épicentre le plus précisément possible. Puis on enregistre les vibrations qui se propagent à travers tout le globe. Ces phénomènes ondulatoires sont soumis à des lois physiques telles que la réflexion ou la réfraction. De plus, elles ne se déplacent pas toutes à la même vitesse suivant le milieu qu’elles traversent ce qui permet d’évaluer le contenu de la Terre par l’examen attentif des courbes temps / distance parcourue. Les ondes étudiées dans la tomographie sismique sont les ondes de fond qui parcourent le globe terrestre dans toutes les directions. Les ondes de surface, qui causent les dégâts aux constructions humaines, ne se propagent que dans la croûte et ne donnent aucune information sur les couches profondes.
Certaines ondes arrivent rapidement : ce sont les ondes P (comme Premières) ; d’autres sont retardées et sont enregistrées plus tard : ce sont les ondes S (comme Secondes).
Les ondes P sont des vibrations qui agissent en compression : les particules se déplacent dans le sens de propagation de l’onde, un peu comme dans un ressort. Ces ondes de compression se propagent dans les solides, les liquides et les gaz. Les ondes S sont des ondes de cisaillement : les particules se déplacent perpendiculairement au sens de propagation de l’onde, un peu comme une oscillation sur une corde. Ces ondes de cisaillement se propagent dans les solides mais pas dans les milieux liquides ou gazeux. La vitesse des deux types d’ondes P et S varie en fonction de la densité du matériau traversé. Plus la couche traversée est molle, plus les ondes se propagent lentement. De plus, lorsqu’une onde P arrive non perpendiculairement sur une zone de transition (interface manteau-noyau par exemple) une petite partie de son énergie est convertie dans une autre forme d’onde (une fraction de P devient alors S). L’interprétation des relevés sismographiques est donc ardue car s’y chevauchent les tracés de nombreux types d’ondes qu’il faut démêler et dont on doit expliquer l’origine. Pour s’y retrouver un peu mieux, on a désigné toutes ces ondes par des lettres différentes qu’on peut ensuite combiner au fur et à mesure de leur évolution (voir tableau ci-dessous).
Onde P Onde S manteau P S noyau externe K noyau interne I J Ainsi une onde PP est une onde P qui, après avoir subi une réflexion à la surface du globe terrestre, est restée dans le manteau avant de réapparaître en surface où elle est détectée. Une onde PKP sera une onde P qui ressort en surface après avoir traversé le noyau externe liquide (trajet = manteau / noyau ext. / manteau). On peut ainsi allonger l’appellation autant que nécessaire. Prenons un exemple assez complexe : une onde quasi verticale traversant le globe terrestre de part en part après avoir rebondi à la surface et être passée deux fois (à l’aller et au retour) par le noyau et la graine réapparaîtra à la surface affublée du gentil sobriquet, palindrome totalement imprononçable, de PKIKPPKIKP !
Au cours du XXe siècle, plusieurs découvertes essentielles ont été faites grâce à la tomographie sismique.
En 1909, Andrija Mohorovičić détecte sous la Croatie l’interface croûte / manteau appelée désormais par les intimes, et en hommage à son découvreur, Moho.
En 1912, Beno Gutenberg (1889-1960) replace l’interface manteau / noyau à 2900 km de profondeur grâce à l’étude des ondes P, donnant son nom à la discontinuité entre le manteau inférieur et le noyau externe, discontinuité dîte de Gutenberg.
En 1926, Harold Jeffreys (1891-1989) établit la fluidité du noyau métallique.
En 1936, Inge Lehmann (1888-1993) découvre la graine (ou noyau interne) : partie métallique à l’intérieur du noyau. Sa solidité sera établie plus tard au cours des décennies suivantes.
Dans le même temps, de 1923 à 1952, d’autres géophysiciens (Adams, Williamson , Bullen, Birch…) travaillent sur des équations permettant de déterminer la variation de la densité avec la profondeur et la pression qu’elle engendre.
Connaître l'essentiel de la structure de notre globe doit s'accompagner nécessairement de l'étude de sa dynamique interne afin de mieux comprendre son évolution, ses soubresauts sismiques, les variations du champ magnétique, etc.
L’étude du magnétisme
Le magnétisme terrestre est un phénomène fort complexe à interpréter. La Terre se comporte comme une sorte de dynamo auto-entretenue qui génère un champ magnétique important (celui qui dévie l’aiguille de la boussole et nous protège de certaines perturbations cosmiques). Ce champ est variable dans le temps et il s’est même inversé des centaines de fois depuis l’origine. Interpréter cette dynamique est indissociable de la compréhension de la composition des structures internes du globe terrestre et de leurs mouvements.
Des tentatives de modélisation numérique et des expériences en laboratoire sont à l’étude. Si elles n’ont pas encore permis de créer un effet dynamo dans une sphère, elles ont montré que des colonnes de convection apparaissent à certaines températures en fonction de la viscosité du liquide et de la vitesse de rotation. Ces mouvements sont compatibles avec les hypothèses de création du champ électromagnétique terrestre tel que nous le connaissons.
Modèle actuel
Structure détaillée
(1) Croûte continentale solide essentiellement granitique surmontée par endroit de roches sédimentaires. Elle est plus épaisse que la croûte océanique (de 30 km à 100 km sous les massifs montagneux). La croûte ou écorce terrestre représente environ 1,5% du volume terrestre. Elle était anciennement appelée SIAL (silicium + aluminium).
(2) Croûte océanique solide essentiellement composée de roches basaltiques. Relativement fine (environ 5 km). Elle est également appelée SIMA (silicium + magnésium).
(3) Zone de subduction où une plaque s’enfonce parfois jusqu’à plusieurs centaines de kilomètres dans le manteau.
(4) Manteau supérieur qui est moins visqueux (plus "ductile") que le manteau inférieur car les contraintes physiques qui y règnent le rendent liquide en partie. Il est formé essentiellement de roches telle que la péridotite (ses minéraux sont: olivine, pyroxène, grenat). Au contact entre la croûte et le manteau supérieur on peut parfois déceler une zone appelée LVZ. (voir n°11).
(5) Éruptions sur des zones de volcanisme actif. Deux types de volcanismes sont représentés ici, le plus profond des deux est dit « de point chaud ». Il s’agirait de volcans dont le magma proviendrait des profondeurs du manteau proche de la limite avec le noyau liquide. Ces volcans ne seraient donc pas liés aux plaques tectoniques et, ne suivant donc pas les mouvements de l’écorce terrestre, ils seraient donc quasiment immobiles à la surface du globe, et formeraient les archipels d'îles comme celui de Tahiti.
(6) Manteau inférieur aux propriétés d’un solide élastique. Le manteau n’est pas liquide comme on pourrait le croire en regardant les coulées de lave de certaines éruptions volcaniques mais il est moins "rigide" que les autres couches. Le manteau représente 84 % du volume terrestre.
(7) Panache de matière plus chaude qui, partant de la limite avec le noyau, fond partiellement en arrivant près de la surface de la Terre et produit le volcanisme de point chaud.
(8) Noyau externe liquide essentiellement composé de fer (environ 80 %) et de nickel plus quelques éléments plus légers. Sa viscosité est proche de celle de l’eau, sa température moyenne atteint 4000 °C et sa densité 10. Cette énorme quantité de métal en fusion est certainement agitée (par convection, mais aussi suite aux divers mouvements de rotation et de précession du globe terrestre). Des écoulements de fer liquide peuvent y engendrer des courants électriques qui donnent naissance à des champs magnétiques qui renforcent les courants créant ainsi un effet dynamo en s’entretenant les uns les autres. Le noyau liquide est donc à l’origine du champ magnétique terrestre.
(9) Noyau interne solide (ou graine) essentiellement métallique (alliage de fer et de nickel principalement) constitué par cristallisation progressive du noyau externe. La pression, qui est de 3,5 millions de bars (350 Gpa), le maintient dans un état solide malgré une température supérieure à 5000 °C et une densité d’environ 13. Le noyau interne présente également une rotation différentielle, il ne tourne pas exactement à la même vitesse que le reste de la planète : sa vitesse angulaire de rotation est plus grande de 0,3 à 0,5 degré par an[1] (d’après ces derniers chiffres, il faudrait donc entre 720 et 1200 ans environ pour que le noyau interne "gagne" un tour complet par rapport au reste de la Terre[2]). Enfin, une étude récente démontre que le noyau interne est lui-même subdivisé en deux parties, une interne et une externe donc, et dans lesquelles le métal qui compose le noyau n’aurait pas la même structure cristalline[3].
Noyau interne et externe représentent 15 % du volume terrestre.
(10) Cellules de convection du manteau où la matière est en mouvement lent. Le manteau est le siège de courants de convection qui transfèrent la majeure partie de l’énergie calorifique du noyau de la Terre vers la surface. Ces courants provoquent la dérive des continents mais leurs caractéristiques précises (vitesse, amplitude, localisation) sont encore mal connues.
(11) Lithosphère : elle est constituée de la croûte (plaques tectoniques) et d'une partie du manteau supérieur. La limite inférieure de la lithosphère se trouve à une profondeur comprise entre 100 et 200 kilomètres, à la limite où les péridotites approchent de leur point de fusion. On trouve parfois à la base de la lithosphère (certains géologues l’y incluent) une zone appelée LVZ (pour « Low Velocity Zone ») où on constate une diminution de la vitesse et une atténuation marquée des ondes sismiques P et S. Ce phénomène est dû à la fusion partielle des péridotites qui entraîne une plus grande fluidité. La LVZ n’est généralement pas présente sous les racines des massifs montagneux de la croûte continentale.
(12) Asthénosphère : c’est la zone inférieure du manteau supérieur (en dessous de la lithosphère)
(13) Discontinuité de Gutenberg : zone de transition manteau / noyau.
(14) Discontinuité de Mohorovicic : zone de transition croûte / manteau (elle est donc incluse dans la lithosphère).
Caractéristiques
Chaleur interne
Sur la figure ci-contre, les températures sont données en degrés Celsius à titre indicatif. Ne pouvant être mesurées directement mais uniquement déduites, elles sont approximatives (plus on s’enfonce et plus la marge d’erreur est grande). La plus grande partie de la chaleur interne de la Terre (87%), est produite par la radioactivité naturelle des roches par désintégration de l'uranium, du thorium et du potassium.
Rayon variable
Le globe terrestre n’est pas parfaitement sphérique et le rayon réel équatorial est supérieur d’une vingtaine de kilomètres au rayon polaire.
Effet étonnant qui en découle : Le Mississippi, dont la source se situe près des Grands Lacs, se déverse dans le golfe du Mexique à un niveau (distance au centre du globe) plus élevé que celui de sa source. Si on évaluait l'altitude par rapport au centre de la Terre, l'eau s'écoulerait donc du point le plus bas vers le point le plus haut. En réalité le niveau des mers étant toujours pris comme référence des altitudes, le raisonnement en termes d'énergie mécanique est bien valide.
Notes et références
- ↑ D’après Jian Zhang, Xiaodong Song, et d’autres chercheurs du Lamont-Doherty Earth Observatory et de l'Université de l'Illinois ; voir (fr) Futura-sciences ; "Rotation distincte du noyau interne de la Terre", mis en ligne le 9 septembre 2005
- ↑ Sachant qu’un tour complet est égal à 360 degrés, on a: 360 degrés divisé par 0,3 degré par an donne 1200 années, et 360 degrés divisé par 0,5 degré par an donne 720 années
- ↑ D’après les travaux des géophysiciens Xiaodong Song et Xinlei Sun (Université de l’Illinois), voir (fr) Futura-sciences ; "La Terre a un double coeur solide !", mis en ligne le 12 mars 2008
Bibliographie
Publications écrites
- CABROL N. et GRIN E. « La Terre et la Lune », Que sais-je, N° 875, PUF, 1998
- René Dars « La géologie », Que sais-je, N° 525, PUF, 2000
- Vincent Deparis et Hilaire Legros, « Voyage à l’intérieur de la Terre », CNRS Editions, Paris, 2000
- Jean Goguel (s.d.d.) « Géophysique », La Pleïade NRF Gallimard, 1971
- Gabriel Gohau, « Une histoire de la géologie, Le Seuil, 1990
- Maurice Krafft, « Les feux de la Terre » , Gallimard, 1991
- Maurice Mattauer, « Ce que disent les pierres », Librairie Pour la Science, 1998
- Henri Claude Nataf et s.d. de Joël Sommeria, « La physique de la Terre », Belin CNRS Editions, 2000
- Jules Verne, « Voyage au centre de la Terre », Éditions Hetzel, 1867
- J.-P. Poirier, « Les profondeurs de la Terre », Masson, 1996
- Article du magazine Pour la Science
- N° 225 (1996), ALEXANDRESCU M. et HULOT G. « Voir le noyau »
- N° 226 (1996), Rolf Emmermann, « Neuf kilomètres sous l’Allemagne »
- N° 265 (1999), Maurice Mattauer, « Sismique et tectonique »
- N° 318 (2004), Marianne Greff-Lefftze, « La Terre, une toupie au cœur liquide »
- N° 318 (2004), Henri Claude Nataf, Dominique Jault, Daniel Brito et Philippe Cardin, « Le moteur de la dynamo terrestre »
- N° 318 (2004), Sandro Scandolo et Raymond Jeanloz, « Au cœur des planètes »
- N° 329 (2005), Marc Javoy, « La naissance de la Terre »
Liens externes
- (fr) Le site d’origine de cet article pour le voir avec toutes ses illustrations
- (en) International Earth and Reference System Service IERS
- (fr) Objectif Terre (Suisse)
- (fr) Planète Terre (Canada)
- (fr) Institut de Physique du Globe de Paris - Notre Terre
- (fr) Association de sciences de la Terre
- (fr) Planet-Terre
- (fr) Projet Geoscope
- (fr) CNRS Geomanips
- (fr) Institut National des Sciences de l’Univers
- (fr) Histoire de la découverte de la structure interne de la Terre au cours des siècles
- (fr) Terre, Planète active
La Terre : structure interne · hydrosphère · relief · atmosphère noyau ~ manteau ~ asthénosphère ~ lithosphère ~ croûte terrestre - Portail des sciences de la Terre et de l’Univers
Catégorie : Structure terrestre
Wikimedia Foundation. 2010.