Sous-espace affine engendré

Sous-espace affine engendré
Cet article court présente un sujet plus développé dans : Barycentre (géométrie affine).

Dans un espace affine \mathbb{E}, le sous-espace affine engendré par une partie non vide A, également dénommé l'enveloppe affine de A, est le plus petit sous-espace affine de E contenant A, c'est-à-dire l'intersection de tous les sous-espaces affines contenant A. C'est un sous-espace affine. On peut aussi le décrire comme l'ensemble des barycentres des points de A.

En analyse convexe, on note souvent l'enveloppe affine de A\subset\mathbb{E} par


\operatorname{aff}A.


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Sous-espace affine engendré de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Sous-espace affine engendre — Sous espace affine engendré Cet article court présente un sujet plus amplement développé ici : Barycentre (géométrie affine). Dans un espace affine E, le sous espace engendré par une partie non vide A, également dénommé enveloppe affine de A …   Wikipédia en Français

  • Sous-espace projectif — En géométrie projective, un sous espace projectif est défini comme le projeté d un sous espace vectoriel de l espace vectoriel associé. Contrairement à ce qui se passe en géométrie affine, les propriétés sur les dimensions règlent de nombreux… …   Wikipédia en Français

  • Espace Euclidien — En mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le… …   Wikipédia en Français

  • Espace euclidien (algèbre linéaire) — Espace euclidien En mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique …   Wikipédia en Français

  • Espace vectoriel — En algèbre linéaire, un espace vectoriel est un ensemble muni d une structure permettant d effectuer des combinaisons linéaires. Étant donné un corps K, un espace vectoriel E sur K est un groupe commutatif (dont la loi est notée +) muni d une… …   Wikipédia en Français

  • Enveloppe affine — Sous espace affine engendré Cet article court présente un sujet plus amplement développé ici : Barycentre (géométrie affine). Dans un espace affine E, le sous espace engendré par une partie non vide A, également dénommé enveloppe affine de A …   Wikipédia en Français

  • Espace vectoriel normé de dimension finie — Topologie d un espace vectoriel de dimension finie En mathématiques, la topologie d un espace vectoriel de dimension finie correspond à un cas particulier d espace vectoriel normé. Cette configuration se produit si la dimension est finie. Elle… …   Wikipédia en Français

  • Barycentre (géométrie affine) — Pour les articles homonymes, voir Barycentre. En géométrie affine, le barycentre de plusieurs points affectés de coefficients est un point annulant une certaine égalité vectorielle. Le calcul de barycentre est l outil fondamental de la géométrie… …   Wikipédia en Français

  • Barycentre (Géométrie Affine) — Pour les articles homonymes, voir Barycentre. En géométrie affine, le barycentre de plusieurs points affectés de coefficients est un point annulant une certaine égalité vectorielle. Le calcul de barycentre est l outil fondamental de la géométrie… …   Wikipédia en Français

  • Espace homogène — En géométrie un espace homogène est un espace sur lequel un groupe agit de façon transitive. Dans l optique du programme d Erlangen, le groupe représente des symétries préservant la géométrie de l espace, et le caractère homogène se manifeste par …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”