Probleme des contacts

Probleme des contacts

Problème des contacts

Sommaire

Traité des contacts d'Apollonius

Le problème des trois cercles : Trouver un cercle tangent à trois cercles donnés de rayons différents.

C'est un des grands problèmes de l'antiquité.

Ce problème dit problème d'Apollonius, a été présenté par Pappus comme étant le dixième et le plus difficile du Traité des contacts, un des ouvrages perdus d'Apollonius.

En effet, il faudra attendre 1600 pour sa résolution par François Viète qui montrera qu'il admet au maximum huit solutions.
Pour cela dans l'Apollonius Gallus, il va résoudre les dix problèmes présentés ci-dessous (sans traiter les cas particuliers).

La détermination de cercle astreint à trois conditions prises parmi celles qui consistent à passer par un point donné, ou à être tangent à une droite ou un cercle donné, répond à dix problèmes désignés par les symboles PPP, DDD, PPD, PPC... en représentant un point par P, une droite par D et un cercle par C.

  • Le problème 1, PPP, est résolu avec le cercle circonscrit dont le centre est le point d'intersection des médiatrices du triangle.
  • Le problème 2, DDD, a pour solutions les cercles inscrit et exinscrits lorsque les droites forment un triangle. Viète le traitera de façon isolée.
  • Le problème 3, PPD, se ramène au problème 1 en utilisant des angles inscrits.
  • Le problème 4, PPC, se trouve grâce à l'introduction d'un cercle intermédiaire.
  • Le problème 5, PDD, se ramène au problème 4 en introduisant le symétrique du point par rapport à une bissectrice des deux droites.
  • Le problème 6, PCC, se ramène au problème 4 en trouvant un deuxième point situé sur la droite joignant le point donné à un des centres de similitude des deux cercles.
  • Le problème 7, PDC, se ramène au problème 3 grâce à un point intermédiaire
  • Le problème 8, DDC, se ramène au problème 5 par la méthode des translations en déplaçant les droites d'une longueur égale au rayon du cercle.
  • Le problème 9, DCC, se ramène au problème 7 en remplaçant le plus grand des cercles par un cercle ayant pour rayon la somme ou la différence des rayons de ces deux cercles et l'on déplace la droite parallèlement à elle-même d'une longueur égale au rayon du petit cercle.
  • Le problème 10, CCC, se ramène au problème 6 en substituant aux deux plus grands cercles, des cercles concentriques dont les rayons différent d'une quantité égale au rayon du plus petit cercle.

Le problème sera généralisé par Descartes en 1643.

Lien externe

Construction de cercles

Constructions de tangentes et de cercles tangents

Trouver des points de contact - Utilisations de configurations faisant intervenir l'homothétie (deux droites) ou l'inversion (deux cercles).

Tangente en un point du cercle

D'un point A situé sur un cercle de centre O on peut mener une tangente à ce cercle en traçant la perpendiculaire en A au rayon [OA].

Tangente cercle.svg

Construction à la règle et au compas (sans équerre). Tracer le point B symétrique de O par rapport à A et puis la médiatrice de [BO].

Tangentes à un cercle passant par un point donné

D'un point M extérieur à un cercle, on peut mener deux tangentes à ce cercle ; elles touchent le cercle en A et B et on a MA = MB. La droite (OM) est un axe de symétrie de la figure, c'est la bissectrice de l'angle AMB.

Tangentes.gif

Construction d'Euclide

Étant donné un cercle (c) de centre O et un point M à l'extérieur du cercle, les points de contact A et B des tangentes issues de M sont les points d'intersection du cercle (c) et du cercle de diamètre [MO].

Cercle tangent à deux droites passant par un point donné

On donne deux droites (d1), (d2) sécantes et un point A n'appartenant pas à ces droites. Existe-t-il un cercle passant par A tangent à ces deux droites ?

Cercle tg 2 droites.gif

Construction

Placer un point J sur la bissectrice de (d1, d2) située dans le même secteur angulaire que le point A et tracer le cercle (c), passant par H projection orthogonale de J sur la droite (d1). Ce cercle est tangent aux deux droites.

Étant donné un cercle (c), la droite (IA) rencontre (c) en deux points A1 et A2. La droite parallèle à (A1J) passant par A rencontre (IJ) en O1. Le cercle (c1), de centre O1 passant par A, est tangent à (d1) et (d2).

De même, la droite parallèle à (A2J) passant par A rencontre (IJ) en O2. Le cercle (c2), de centre O2 passant par A, est la deuxième solution du problème.

Cercle tangent à deux cercles

On donne deux cercles (c1), (c2) de centres O1, O2, de rayons différents r1 et r2. Étudier les cercles (c) tangents à ces deux cercles ?

Similitude CC.svg

Il existe deux homothéties H(S, r1/r2) et H(S', -r1/r2) transformant (c1) en (c2).

Les points S et S' centres d'homothéties des cercles sont les points qui partagent le segment [O1O2] dans le rapport r1/r2.

Si un cercle (c) est tangent aux cercles (c1), (c2) en T et T', la droite (TT') qui joint les points de contact passe par un centre d'homothétie. La puissance p du centre d'homothétie par rapport au cercle (c) variable est constante.

p = ST × ST' = ST × ST1 × ST'/ST1 = ST × ST1 × r2/r1.

On obtient la puissance du pointS par rapport au cercle (c1) multiplié par le rapport des rayons. Si U et U' sont les points d'intersection de (c1) et (c2) avec la ligne des centres, la puissance du point S par rapport au cercle de diamètre [UU'] est p = SU × SU'.

Le cercle (c) est globalement invariant par l'inversion de centre S de puissance p.

Lien externe

  • Portail de la géométrie Portail de la géométrie

Ce document provient de « Probl%C3%A8me des contacts ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Probleme des contacts de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Problème des contacts — Figure 1 : Une solution (en rose) au problème d Apollonius. Les trois cercles donnés sont en noir …   Wikipédia en Français

  • Mécanique des contacts — Tensions dans une zone de contact chargée simultanément par une force normale et une force tangentielle. Les tensions ont été rendues visibles par photo élastimétrie. La mécanique des contacts traite des calculs impliquant des corps élastiques,… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Contacts transocéaniques précolombiens — Contacts trans océaniques précolombiens Les contacts trans océaniques précolombiens désignent les rencontres entre les peuples indigènes d Amérique et les navigateurs d autres continents antérieures aux explorations de Christophe Colomb. Le seul… …   Wikipédia en Français

  • Problème israélo-arabe — Conflit israélo arabe  Pour le conflit israélo palestinien, voir Conflit israélo palestinien. Conflit israélo arabe …   Wikipédia en Français

  • Contacts trans-océaniques précolombiens — Les contacts trans océaniques précolombiens désignent les rencontres entre les peuples indigènes d Amérique et les navigateurs d autres continents antérieures aux explorations de Christophe Colomb. Le seul à être historiquement avéré est relaté… …   Wikipédia en Français

  • Problème israélo-palestinien — Conflit israélo palestinien  Pour le conflit israélo arabe, voir conflit israélo arabe …   Wikipédia en Français

  • Historique des versions d'iOS — ██████████85  …   Wikipédia en Français

  • Théorie des mécanismes — Pour les articles homonymes, voir Théorie des mécanismes (homonymie). On entend par théorie des mécanismes[1] un ensemble de méthodes qui permettent d étudier les mécanismes et les structures, en vue de les comprendre, de les améliorer ou de les… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”