Partie dense
- Partie dense
-
Densité (mathématiques)
En topologie, le concept de densité d'un sous-ensemble A d'un espace topologique X permet de refléter l'idée que pour tout point x de X on peut trouver un point de A qui soit aussi proche de x que possible. Ainsi, cette notion exprime la « densité », au sens usuel, de répartition des points de A dans X.
Définition
Soit X un espace topologique et A un sous-ensemble de X. On dit que A est dense dans X si pour tout élément x de X, tout voisinage de x contient au moins un point de A.
De façon équivalente, A est dense dans X si le seul sous-ensemble fermé de X contenant A est X lui-même. C’est-à-dire que l'adhérence de A est X, ou que l'intérieur du complémentaire ensembliste de A est vide.
Dans le cas d'un espace métrique, il est possible d'utiliser la définition suivante : l'ensemble A dans un espace métrique X est dense si tout élément x de X est la limite d'une suite d'éléments de A.
Espace topologique séparable
Un espace séparable est un espace topologique possédant un sous-ensemble dense dénombrable.
Point dense
Un point x de X est dense si l'ensemble {x} est dense dans X.
Exemples
Voir aussi
Articles connexes
- Portail des mathématiques
Catégorie : Topologie générale
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Partie dense de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
dense — [ dɑ̃s ] adj. • fin XIVe; lat. densus « épais » 1 ♦ Qui est compact, épais. Brouillard dense. ⇒ impénétrable. Le feuillage dense des arbres. ⇒ abondant, serré, touffu. ♢ Une foule dense, nombreuse et rassemblée. Circulation très dense. 2 ♦… … Encyclopédie Universelle
Dense nulle-part — Ensemble nulle part dense En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque… … Wikipédia en Français
Dense nulle part — Ensemble nulle part dense En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque… … Wikipédia en Français
Dense plasma focus — Nikolaï Filippov et son Plasma Focus à l Institut Kourtchatov de Moscou L expression dense plasma focus (DPF) désigne un appareil qui, par accélération et compression électromagnétiques, donne naissance à un cordon de plasma à vie courte qui… … Wikipédia en Français
Partie constructible — En géométrie algébrique, la notion d ensembles constructibles généralise les parties ouvertes, fermées et même localement fermées. Les ensembles constructibles ont été introduits par Claude Chevalley, et présentent l avantage d être d une… … Wikipédia en Français
Ensemble Nulle Part Dense — En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque aucun point de X ne peut… … Wikipédia en Français
Ensemble dense nulle-part — Ensemble nulle part dense En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque… … Wikipédia en Français
Ensemble dense nulle part — Ensemble nulle part dense En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque… … Wikipédia en Français
Ensemble nulle-part dense — En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque aucun point de X ne peut… … Wikipédia en Français
Nulle-part dense — Ensemble nulle part dense En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque… … Wikipédia en Français