Nombre de Friedman

Nombre de Friedman

En mathématiques, un nombre de Friedman est un nombre entier qui est le résultat d'une combinaison de tous ses chiffres dans une base donnée, à l'aide des quatre opérations arithmétiques élémentaires (+, -, \times, \div\,) et quelquefois l'exponentiation.

Sommaire

Premiers exemples

Par exemple, 347 est un nombre de Friedman puisque 347 = 73 + 4.

La suite des nombres de Friedman en base 10 (suite A036057 de l’OEIS) commence par : 25, 121, 125, 126, 127, 128, 153, 216, 289, 343.

Les parenthèses peuvent être utilisées dans les expressions, mais seulement pour isoler une expression par rapport à un opérateur, par exemple, dans 1 024 = (4 - 2)10. Permettre les parenthèses sans les opérateurs donnerait des nombres de Friedman fictifs tels que 24 = (24). Les zéros non-significatifs ne sont pas utilisés, puisque cela donnerait des nombres de Friedman fictifs, tels que 001 729 = 1 700 + 29.

Mike Reid et Philippe Fondanaiche ont découvert les deux premiers nombres de Friedman pandigitaux sans zéros (i.e. dont l'écriture en base 10 utilise au moins une fois chaque chiffre de 1 à 9) :

123~456~789 = \frac{({86 + 2 * 7}^5 - 91)}{34},

et :

987~654~321 = 8 \times \frac{(97 + {\frac{6}{2}}^5 + 1)}{3^4}~.

À partir de l'observation que toutes les puissances de 5 paraissent être des nombres de Friedman, on peut trouver des chaînes de nombres de Friedman consécutifs. Friedman donne l'exemple de 250~068 = 500^2 + 68\,, à partir duquel on peut facilement déduire l'intervalle de nombres de Friedman consécutifs de 250 010 à 250 099.

Un nombre de Friedman agréable est un nombre de Friedman où les chiffres dans l'expression peuvent être arrangés dans le même ordre que dans le nombre lui-même. Par exemple, nous pouvons arranger 127 = 27 - 1 comme 127 = -1 + 27. Toutes les expressions pour les nombres de Friedman agréables inférieurs à 10 000 nécessitent l'addition et la soustraction.

La suite des nombres de Frieman agréables (suite A080035 de l’OEIS) commence par : 127, 343, 736, 1 285, 2 187, 2 502, 2 592, 2 737, 3 125, 3 685.

Fondanaiche pense que le plus petit nombre uniforme de Friedman agréable est 99 999 999 = (9 + 9/9)9-9/9 - 9/9. Brandon Owens a démontré que les nombres uniformes de plus de 24 chiffres sont des nombres de Friedman agréables dans n'importe quelle base.

Algorithmes pour trouver des nombres de Friedman

Dans n'importe quelle base b, les nombres de Friedman à seulement deux chiffres sont généralement moins nombreux que ceux à trois chiffres ou plus, mais ils sont plus faciles à trouver. Si nous représentons un nombre à deux chiffres sous la forme mb + n, où m, n sont des nombres entiers compris entre 0 et b-1 (avec m non nul), il suffit de résoudre chacune des deux équations :

m.b + n = m^n\, et
m.b + n = n^m~.

Inutile de se préoccuper de m + n, puisqu'il est toujours strictement inférieur à mb + n. Il en va de même pour mn, m - n et m/n.

Pour traiter les nombres à trois chiffres, la méthode reste la même mais il y a plus d'équations à résoudre. En représentant un nombre à trois chiffres sous la forme k.b^2 + m.b + n\,, il faut considérer les expressions

k^m + n\,,
k^n + m\,,
k^{m+n}\,,
n \times (k.b + m)\,, etc.

Les nombres de Friedman exprimés en chiffres romains

Dans un sens trivial, tous les nombres exprimés en chiffres romains avec plus d'un symbole sont des nombres de Friedman. L'expression est créé en insérant simplement les signes + dans l'expression, et occasionnellement le signe - avec un léger réarrangement dans l'ordre des symboles.

Mais Erich Friedman et Robert Happleberg ont fait certaines recherches sur les nombres exprimés en chiffres romains pour lesquels l'expression utilise d'autres opérateurs que + et -. Leur première découverte fut le nombre de Friedman agréable 8, puisque VIII = (V - I) * II. Ils ont aussi trouvé beaucoup de nombres de Friedman exprimés en chiffres romains pour lesquels l'expression utilise l'exponentiation, par exemple 256 puisque CCLVI = IV^{\frac{CC}{L}}\, .

La difficulté pour trouver des nombres de Friedman exprimés en chiffres romains non-triviaux n'augmente pas avec la taille du nombre (comme c'est le cas avec les systèmes de nombres à notation positionnelle) mais avec le nombre de symboles qu'il possède. Ainsi, par exemple, il est plus pénible de savoir si 137 (CXLVII) est un nombre de Friedman exprimé en chiffre romain que de faire la même détermination pour 1 001 (MI). Avec les nombres exprimés en chiffres romains, on peut au moins faire dériver certaines expressions de Friedman à partir desquelles on peut découvrir d'autres. Friedman et Happleberg ont montré que tout nombre finissant par VIII est un nombre de Friedman basé sur l'expression donnée ci-dessus, par exemple.

Les nombres de Friedman parfaits ou nombres de Chauvin-Le Lamer

Ce sont des nombres de Friedman qui sont le résultat d'une combinaison de nombres de Friedman dans une base donnée, à l'aide des quatre opérations arithmétiques élémentaires (+, -, \times, \div\,). Le premier nombre de Chauvin-Le Lamer en base 10 étant 25=153-128.[réf. souhaitée]

Référence


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Nombre de Friedman de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Nombre De Friedman — En mathématiques, un nombre de Friedman est un nombre entier qui, dans une base donnée, est le résultat d une expression utilisant ses propres chiffres en combinaison avec une des quatre opérations arithmétique de base ( ) et quelque fois l… …   Wikipédia en Français

  • Nombre de friedman — En mathématiques, un nombre de Friedman est un nombre entier qui, dans une base donnée, est le résultat d une expression utilisant ses propres chiffres en combinaison avec une des quatre opérations arithmétique de base ( ) et quelque fois l… …   Wikipédia en Français

  • Nombre etrange — Nombre étrange En mathématiques, un nombre étrange n est un nombre naturel qui est abondant mais non semi parfait : la somme de ses diviseurs propres (y compris 1 mais pas n) est plus grande que n mais aucune somme de certains de ses… …   Wikipédia en Français

  • Nombre Étrange — En mathématiques, un nombre étrange n est un nombre naturel qui est abondant mais non semi parfait : la somme de ses diviseurs propres (y compris 1 mais pas n) est plus grande que n mais aucune somme de certains de ses diviseurs n est égale… …   Wikipédia en Français

  • Nombre étrange — En mathématiques, un nombre étrange n est un nombre naturel qui est abondant mais non semi parfait : la somme de ses diviseurs propres (y compris 1 mais pas n) est plus grande que n mais aucune somme de certains de ses diviseurs n est égale… …   Wikipédia en Français

  • Nombre de Graham — Le nombre de Graham, du nom du mathématicien Ronald Graham, est un entier naturel connu pour avoir été longtemps le plus grand entier apparaissant dans une démonstration mathématique[1]. Il est beaucoup trop grand pour être écrit grâce à la… …   Wikipédia en Français

  • Friedman-Lemaître-Robertson-Walker — La métrica de Friedman Lemaître Robertson Walker (FLRW) describe un universo en expansión o contracción, homogéneo, isotrópico. Según las preferencias geográficas o históricas en el nombre de esta métrica se utiliza algún subconjunto de los… …   Enciclopedia Universal

  • 300 (nombre) — Nombres 300 à 399 Cet article recense les nombres qui ont des propriétés remarquables allant de trois cents (300) à trois cent quatre vingt dix neuf (399). Sommaire : 300 · 301 · 302 · 303 · 304 · 305 · 306 · 307 · 308 · 309 310 · 311 · 312… …   Wikipédia en Français

  • 300 à 399 (nombre) — Nombres 300 à 399 Cet article recense les nombres qui ont des propriétés remarquables allant de trois cents (300) à trois cent quatre vingt dix neuf (399). Sommaire : 300 · 301 · 302 · 303 · 304 · 305 · 306 · 307 · 308 · 309 310 · 311 · 312… …   Wikipédia en Français

  • 301 (Nombre) — Nombres 300 à 399 Cet article recense les nombres qui ont des propriétés remarquables allant de trois cents (300) à trois cent quatre vingt dix neuf (399). Sommaire : 300 · 301 · 302 · 303 · 304 · 305 · 306 · 307 · 308 · 309 310 · 311 · 312… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”