Module de Galois

Module de Galois

Représentation galoisienne

La théorie des représentations galoisiennes est l'application naturelle de la théorie des représentations à la théorie algébrique des nombres. Un module galoisien est un module sur lequel agit un groupe de Galois G. Ces modules seront par exemple des groupe d'unité, des groupes des classes, ou des groupes de Galois eux-mêmes.

Base normale d'entiers

En théorie algébrique des nombres classique, soit L une extension de corps K, et soit G le groupe de Galois correspondant. Alors l'anneau OL d'entiers de L peut être considéré comme un OK[G]-module. Le théorème de la base normale assure que L est un K[G]-module libre de rang 1 ; c'est un résultat de théorie des corps. La question arithmétique analogue peut donc s'énoncer : OL est-il un OK[G]-module de rang 1. C'est la question de l'existence d'une base normale d'entiers, c'est-à-dire d'\alpha\, dans OK tel que ses éléments conjugués sous G donnent une OK-base de OL. Cette question se pose particulièrement dans le cas où K est le corps \mathbb{Q}\, des nombres rationnels.

En fait, tous les sous-corps des corps cyclotomiques, c'est-à-dire des Qp) où ζp est une racine p-ième de l'unité pour p un nombre premier, ont des bases normales d'entiers (sur \mathbb{Z}\,) ; ceci se déduit de la théorie des périodes de Gauss. En revanche, le corps de Gauss Q(i) n'en admet pas. En fait, ces exemples s'insrivent dans le cadre plus général d'une condition nécessaire trouvée par la mathématicienne Emmy Noether : en prenant K = \mathbb{Q}\, le théorème de Noether établit que le fait que la ramification soit modérée est nécessaire et suffisante pour que OL soit un module projectif sur Z[G]. C'est par conséquent une condition nécessaire pour qu'il soit un module libre. Cela laisse en suspens la question de la différence entre libre et projectif, pour lequel beaucoup de travail a maintenant été fait.

Cohomologie étale

Dans le cas d'un groupe G profini, c'est-à-dire si G est groupe de Galois d'une extension infinie, il existe une grande quantité de G-modules disponibles en théorie cohomologie étale, qui est une théorie algébrique (et par conséquent exhibe la 'covariance' en ce qui concerne la symétrie de Galois). Une découverte de base des années 1960 montre que de tels modules sont comme non-triviaux comme ils peuvent être, en général; de sorte que la théorie des plutôt riche.

Programme de Langlands

Ce document provient de « Repr%C3%A9sentation galoisienne ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Module de Galois de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Galois module — In mathematics, a Galois module is a G module where G is the Galois group of some extension of fields. The term Galois representation is frequently used when the G module is a vector space over a field or a free module over a ring, but can also… …   Wikipedia

  • Module galoisien — Représentation galoisienne La théorie des représentations galoisiennes est l application naturelle de la théorie des représentations à la théorie algébrique des nombres. Un module galoisien est un module sur lequel agit un groupe de Galois G. Ces …   Wikipédia en Français

  • Galois cohomology — In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group G associated to a field extension L / K acts in a natural way… …   Wikipedia

  • Tate module — In mathematics, a Tate module is a Galois module constructed from an abelian variety A over a field K . It is denoted: T l ( A ) where l is a given prime number (the letter p is traditionally reserved for the characteristic of K ; the case where… …   Wikipedia

  • Drinfel'd module — In mathematics, a Drinfel d module (or elliptic module) is roughly a special kind of module over a ring of functions on a curve over a finite field, generalizing the Carlitz module. Loosely speaking, they provide a function field analogue of… …   Wikipedia

  • Dieudonné module — In mathematics, a Dieudonné module introduced by Dieudonné (1954, 1957b), is a module over the non commutative Dieudonné ring, which is generated over the ring of Witt vectors by two special endomorphisms F and V called the Frobenius and… …   Wikipedia

  • Theoreme de Stickelberger — Théorème de Stickelberger En mathématiques, le théorème de Stickelberger est un résultat de la théorie algébrique des nombres, qui donnent certaines informations sur la structure du module de Galois des groupes de classes des corps cyclotomiques …   Wikipédia en Français

  • Théorème de Stickelberger — En mathématiques, le théorème de Stickelberger est un résultat de la théorie algébrique des nombres, qui donne certaines informations sur la structure du module de Galois des groupes de classes des corps cyclotomiques. Il est a été démontré par… …   Wikipédia en Français

  • Théorème de stickelberger — En mathématiques, le théorème de Stickelberger est un résultat de la théorie algébrique des nombres, qui donnent certaines informations sur la structure du module de Galois des groupes de classes des corps cyclotomiques. Il est dû au… …   Wikipédia en Français

  • Liste Des Matières De La Théorie Des Nombres — Article détaillé : cryptologie. . Sommaire 1 Facteur (mathématiques) 2 Fractions 3 Arithmétique modulaire 4 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”