Lexique des arcs paramétrés

Lexique des arcs paramétrés

On trouvera une introduction de la notion d'arc paramétré dans l'article paramétrage. L'étude des courbes est une préoccupation très ancienne, leur description à l'aide de coordonnées remontant à Descartes. Il existe de ce fait un corpus de vocabulaire important qui accompagne ces objets.

Un arc paramétré de classe \mathcal C^k dans l'espace vectoriel E de dimension finie est la donnée

  • d'un intervalle I où variera le paramétre réel t
  • d'une fonction f de I dans E, de classe \mathcal C^k

Glossaire

Abscisse curviligne : forme algébrisée de la longueur permettant le repérage d'un point sur la courbe.

Arc géométrique : classe d'équivalence pour la relation de \mathcal C^k-équivalence des arcs paramétrés.

Arrêt (point d') (ou stationnaire) : point où le vecteur dérivé s'annule. L'existence d'un point d'arrêt n'est pas incompatible avec l'existence d'une tangente, mais alors il y a fréquemment rebroussement, c'est-à-dire que la courbe peut repartir en sens inverse.

Asymptote : type de branche infinie. La courbe présente une droite asymptote quand elle se rapproche de cette droite « à l'infini ». D'autres courbes peuvent être asymptotes. Voir l'article asymptote.

Anguleux (point) : point où l'on trouve deux demi-tangentes formant un angle non plat. Il n'y a donc pas de tangente.

Birégulier (point) : point où les deux premiers vecteurs dérivés sont indépendants. C'est notamment un point ordinaire, régulier, et sans inflexion. Sur une courbe usuelle, la plupart des points sont biréguliers.

Branche infinie : on utilise ce qualificatif lorsqu'une des deux coordonnées au moins tend vers l'infini. Il peut y avoir une direction asymptotique, une asymptote, une branche parabolique,...

Branche parabolique : type de branche infinie, inspirée du comportement de la parabole.

Cercle osculateur ou cercle de courbure : cercle centré au centre de courbure, de rayon le rayon de courbure. Il est osculateur à la courbe. Il permet une définition géométrique de la courbure.

Cercle asymptote ou Cercle-limite : comportement du type spirale

Chemin : arc paramétré ayant pour intervalle de définition un segment.

Concavité : sur une portion suffisamment petite où la courbe peut être vue comme formant un virage, désigne le côté dans la direction duquel on tourne. En un point régulier sans inflexion, elle peut être déterminée par un calcul de courbure.

Corde : pour une courbe fermée, segment reliant deux points de la courbe.

Courbure : la courbure quantifie la propension de la courbe à tourner de part ou d'autre de sa tangente. Voir l'article courbure d'un arc

Demi-tangente : cf article tangente

Direction asymptotique : comportement de branche infinie indiquant la tendance de la courbe à se pencher dans une direction donnée. Il peut y alors avoir une asymptote ou une branche parabolique par exemple.

Double (point) : point qui est atteint deux fois (exactement en théorie)

Équivalence (de deux arcs paramétrés) : plus précisément deux arcs sont dits \mathcal C^k-équivalents quand on peut passer de l'un à l'autre par un reparamétrage (difféomorphisme) de classe \mathcal C^k. La \mathcal C^k-équivalence est une relation d'équivalence. On définit alors l'arc géométrique, classe d'équivalence pour cette relation.

Fermée (courbe) : arc défini par une fonction périodique, voir l'article courbe fermée.

Gauche : courbe tracée dans l'espace à trois dimensions (sens large), éventuellement à comprendre comme courbe non plane (sens strict)

Inflexion (point d') : point où la courbe traverse la tangente, ou encore où la courbure est nulle. Voir l'article inflexion.

Longueur : voir l'article longueur d'un arc

Méplat (point) : point ordinaire non régulier

Multiple (point) : point M de E qui est atteint pour plusieurs valeurs de t.

Ordinaire (point) : le nom vient de ce que c'est le comportement le plus souvent observé. Il s'agit d'un point où la courbe reste du même côté de sa tangente, en avançant.

Osculation, osculateur : désignent un contact d'ordre au moins 2 entre deux courbes, plus fort que la simple tangence ; voir contact (géométrie)

Paramètre admissible : fonction qui permet un changement de paramètre, voir paramétrage

Paramétrage normal : paramétrage pour lequel la vitesse est uniforme de valeur 1. Dans ce cas le paramètre est lui-même une abscisse curviligne.

Plan osculateur : pour une courbe gauche, désigne le plan contenant les vecteurs vitesse et accélération (s'ils sont indépendants). Il a un fort contact avec la courbe (osculation)

Plane (courbe) : courbe contenue dans un plan

Point-limite : la courbe se rapproche d'un point (sans l'atteindre) lorsque le paramètre tend vers une borne du domaine de définition. On peut cependant parler de tangente en un tel point.

Rebroussement (point de) : il y a une tangente, mais la courbe fait demi-tour. Graphiquement on a l'impression de deux branches formant une pointe, mais avec une tangente commune. On distingue les points de rebroussement de première espèce (les deux branches de part et d'autre de la tangente) et de seconde espèce (les deux branches du même côté).

Régulier (point) : point où le vecteur dérivé est non nul. Il y a alors une tangente, dirigée par le vecteur dérivé. Il n'y a pas de rebroussement, mais il peut y avoir inflexion

Repère mobile : les plus utilisés pour l'étude des arcs sont le repère de Frenet et celui des coordonnées polaires ; il y a également le repère de Darboux pour les courbes tracées sur une surface

Sécante : droite joignant deux points de la courbe.

Simple : sans point double, c'est-à-dire que f est injective.

Spirale : type de branche infinie fréquemment rencontré pour l'étude des courbes données par une équation polaire, lorsque l'angle tend vers l'infini. Se matérialise par un enroulement de la courbe autour d'un point (spirale convergente), d'un cercle (spirale à cercle limite), ou à l'infini (spirale divergente).

Stationnaire (point) (ou point d'arrêt) : point où le vecteur dérivé s'annule.

Support (ou trajectoire) : ensemble f(I) des points parcourus

Surosculation, surosculateur : désignent un contact d'ordre au moins 3 entre deux courbes, plus fort que l'osculation. Voir contact (géométrie)

Tangent(e) : la tangente à l'arc en un point est la limite des sécantes issues de ce point et d'un deuxième qui s'en rapproche. Voir l'article tangente

Tangence désigne un contact d'ordre au moins 1 entre deux courbes, manifesté par l'existence d'une tangente commune. Voir contact (géométrie) pour l'échelle des ordres de contact successifs, qui indiquent des propriétés plus fortes que la simple tangence.

Torsion : la torsion indique la propension d'une courbe gauche à s'écarter du plan osculateur

Trajectoire (ou support) : ensemble f(I) des points parcourus

Trièdre de Frenet repère mobile permettant l'étude des courbes gauches.


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Lexique des arcs paramétrés de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Lexique Des Arcs Paramétrés — On trouvera une introduction de la notion d arc paramétré dans l article paramétrage. L étude des courbes est une préoccupation très ancienne, leur description à l aide de coordonnées remontant à Descartes. Il existe de ce fait un corpus de… …   Wikipédia en Français

  • Lexique des arcs parametres — Lexique des arcs paramétrés On trouvera une introduction de la notion d arc paramétré dans l article paramétrage. L étude des courbes est une préoccupation très ancienne, leur description à l aide de coordonnées remontant à Descartes. Il existe… …   Wikipédia en Français

  • Glossaire des arcs paramétrés — Lexique des arcs paramétrés On trouvera une introduction de la notion d arc paramétré dans l article paramétrage. L étude des courbes est une préoccupation très ancienne, leur description à l aide de coordonnées remontant à Descartes. Il existe… …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Arc paramétré — Lexique des arcs paramétrés On trouvera une introduction de la notion d arc paramétré dans l article paramétrage. L étude des courbes est une préoccupation très ancienne, leur description à l aide de coordonnées remontant à Descartes. Il existe… …   Wikipédia en Français

  • Courbe paramétrée — Lexique des arcs paramétrés On trouvera une introduction de la notion d arc paramétré dans l article paramétrage. L étude des courbes est une préoccupation très ancienne, leur description à l aide de coordonnées remontant à Descartes. Il existe… …   Wikipédia en Français

  • Graphe (théorie des graphes) — Théorie des graphes  Pour la notion mathématique utilisée en Théorie des ensembles, voir Graphe d une fonction. La théorie des graphes est une branche commune à l informatique et aux mathématiques étudiant les graphes et les objets qui lui… …   Wikipédia en Français

  • Theorie des graphes — Théorie des graphes  Pour la notion mathématique utilisée en Théorie des ensembles, voir Graphe d une fonction. La théorie des graphes est une branche commune à l informatique et aux mathématiques étudiant les graphes et les objets qui lui… …   Wikipédia en Français

  • Théorie des graphes — Pour la notion mathématique utilisée en Théorie des ensembles, voir Graphe d une fonction. La théorie des graphes est une théorie informatique et mathématique. Les algorithmes élaborés pour résoudre des problèmes concernant les objets de cette… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”