Invariant algébrique
- Invariant algébrique
-
Théorie des invariants
En mathématiques, la théorie des invariants, développée par David Hilbert, est l'étude des invariants des formes algébriques (de façon équivalente, des tenseurs symétriques) pour les actions de groupe lors des transformations linéaires. À la fin du XIXe siècle, elle est au centre d'un important effort de recherche lorsqu'il apparaît qu'elle pourrait être la clé de voûte en algorithmique (en compétition avec d'autres formulations mathématique de l'invariance de la symétrie). Malgré un travail acharné, elle n'a pas tenue ses promesses, mais a permis de développer plusieurs autres disciplines. Au XXIe siècle, les groupes symétriques et les fonctions symétriques, l'algèbre commutative, les espaces de modules et les représentations du groupe de Lie en sont les descendants les plus féconds.
Liens externes
- Portail des mathématiques
Catégorie : Théorie scientifique
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Invariant algébrique de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
Invariant — En mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu en analyse et en algèbre. Sommaire 1 Invariant d une transformation 2… … Wikipédia en Français
Polynôme minimal d'un nombre algébrique — Ne doit pas être confondu avec Polynôme minimal d un endomorphisme. Carl Friedrich Gauß utilise des polynômes minimaux appelés cyclotomiques pour déter … Wikipédia en Français
Polynome minimal d'un nombre algebrique — Polynôme minimal d un nombre algébrique Carl Friedrich Gauß utilise des polynômes minimaux appelés cyclotomiques pour déterminer les polygones constructibles à la règle et au compas. En mathématiques, le polynôme minimal d un nombre algébrique… … Wikipédia en Français
Courbe algébrique — En mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la… … Wikipédia en Français
GÉOMÉTRIE ALGÉBRIQUE — Sous sa forme actuelle, la géométrie algébrique est une branche de l’algèbre relativement récente (cf. ALGÈBRE, DEDEKIND). Pour «comprendre» les phénomènes d’intersection des courbes et des surfaces, il s’est révélé nécessaire d’élaborer des… … Encyclopédie Universelle
Extension Algébrique — En mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est à dire sont racines d un polynôme non nul à coefficients dans… … Wikipédia en Français
Extension algebrique — Extension algébrique En mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est à dire sont racines d un polynôme non nul … Wikipédia en Français
Extension algébrique — En mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est à dire sont racines d un polynôme non nul à coefficients dans… … Wikipédia en Français
Clôture algébrique — En mathématiques, une clôture algébrique d un corps commutatif K est une extension algébrique L de K qui est algébriquement close, c est à dire telle que tout polynôme de degré supérieur ou égal à un, à coefficients dans L, admet au moins une… … Wikipédia en Français
Theorie algebrique des nombres — Théorie algébrique des nombres En mathématiques, la théorie algébrique des nombres est la branche de l arithmétique utilisant des outils issus de l algèbre pour mieux comprendre les nombres. Son origine est l étude des nombres entiers et… … Wikipédia en Français