Fibration de Hopf

Fibration de Hopf

En géométrie la fibration de Hopf donne une partition de la sphère à 3-dimensions S3 par des grands cercles. Plus précisément, elle définit une structure fibrée sur S3. L'espace de base est la sphère à 2-dimensions S2, la fibre modèle est un cercle S1. Ceci signifie notamment qu'il existe une application p de projection de S3 sur S2, telle que les images réciproques de chaque point de S2 soient des cercles.

Cette structure a été découverte par Heinz Hopf en 1931. Cette fibration peut aussi être interprétée comme un fibré principal, de groupe structural le groupe S1 des complexes de module 1.

S^1 \to S^3 \to S^2\,

Sommaire

Construction dans un plan complexe

La sphère S3 peut être identifiée à l'ensemble des éléments (z0, z1) de C2 qui vérifient |z0|2 + |z1|2 = 1. On fait agir sur ce sous-espace le groupe des complexes de module 1, par la formule

\lambda\cdot(z_0,z_1)=(\lambda z_0,\lambda z_1)

Les orbites sous cette action de groupe sont clairement des cercles. L'espace quotient est l'espace projectif complexe CP1, qui s'identifie à S2.

Représentation de la fibration de Hopf à l'aide d'anneaux entrelacés.

Pour construire une application de projection adaptée à ces notations, on peut introduire l'application de Hopf

p(z_0,z_1) = (|z_0|^2-|z_1|^2, 2z_0z_1^*)

le premier élément du couple étant réel, le second complexe, on peut voir le résultat comme un point de R3. Si en outre |z0|2 + |z1|2 = 1, alors p (z0, z1) appartient à la sphère unité. Enfin, on observe que p (z0, z1) = p (z2, z3) si et seulement s'il existe λ de module 1 tel que (z2, z3) = (λz0, λz1).

La représentation ci-contre donne une idée de la disposition des fibres-cercles. Il s'agit d'une vue de la sphère S3 par projection stéréographique. Cette vue remplit tout l'espace et le point diamétralement opposé au centre de la figure est le point à l'infini. Il convient donc d'ajouter aux cercles représentés d'autres cercles continuant à remplir l'espace et un axe perpendiculaire au plan de la photo, qui est le cercle passant par le point à l'infini. Plus précisément, étant donné un parallèle de la sphère S2, son image réciproque (dans R3) par la projection de Hopf est un tore, et les fibres en sont des cercles de Villarceau.

Extension

Par le même procédé toute sphère de dimension impaire S2n+1 apparaît comme un espace fibré sur l'espace projectif CPn, avec pour fibres des cercles. Il s'agit en fait d'une restriction du fibré tautologique sur CPn : chaque fibre de ce dernier est une droite complexe, qu'on restreint en un cercle.

Représentation dans l'espace

Une illustration remarquable de la fibration se trouve dans le chapitre 7 de la série Dimensions

Voir aussi


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Fibration de Hopf de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Fibration De Hopf — En géométrie la fibration de Hopf donne une partition de la sphère à 3 dimensions S3 par des grands cercles. Plus précisément, elle définit une structure fibrée sur S3. L espace de base est la sphère à 2 dimensions S2, la fibre modèle est un… …   Wikipédia en Français

  • Fibration de hopf — En géométrie la fibration de Hopf donne une partition de la sphère à 3 dimensions S3 par des grands cercles. Plus précisément, elle définit une structure fibrée sur S3. L espace de base est la sphère à 2 dimensions S2, la fibre modèle est un… …   Wikipédia en Français

  • Hopf — Heinz Hopf Heinz Hopf (à la droite) à Oberwolfach, à côté de Hellmuth Kneser Heinz Hopf (19 novembre, 1894 – 3 juin, 1971) était un mathématicien né à Gräbschen, en Allemagne. Il a montré très jeune des aptitudes mathématiques. Il est entré en… …   Wikipédia en Français

  • Hopf fibration — In the mathematical field of topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3 sphere (a hypersphere in four dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it… …   Wikipedia

  • Fibration — In mathematics, especially algebraic topology, a fibration is a continuous mapping:p:E o B,satisfying the homotopy lifting property with respect to any space. Fiber bundles (over paracompact bases) constitute important examples. In homotopy… …   Wikipedia

  • Heinz Hopf —  Ne doit pas être confondu avec Eberhard Hopf. Heinz Hopf (à la droite) à l institut de mathématiques d Oberwolfach, à côté de Hellmuth Kneser  …   Wikipédia en Français

  • Enlacement De Hopf — Entrelacs de Hopf Un enlacement de Hopf (en rouge et vert) et une de ses surfaces de Seifert. En mathématiques, l entrelacs de Hopf est un des modèles les plus simples étudiés en théorie des nœuds. C est l entrelacs non trivial et non connexe le… …   Wikipédia en Français

  • Enlacement de Hopf — Entrelacs de Hopf Un enlacement de Hopf (en rouge et vert) et une de ses surfaces de Seifert. En mathématiques, l entrelacs de Hopf est un des modèles les plus simples étudiés en théorie des nœuds. C est l entrelacs non trivial et non connexe le… …   Wikipédia en Français

  • Enlacement de hopf — Entrelacs de Hopf Un enlacement de Hopf (en rouge et vert) et une de ses surfaces de Seifert. En mathématiques, l entrelacs de Hopf est un des modèles les plus simples étudiés en théorie des nœuds. C est l entrelacs non trivial et non connexe le… …   Wikipédia en Français

  • Entrelacs de Hopf — Un enlacement de Hopf (en rouge et vert) et une de ses surfaces de Seifert. En mathématiques, l entrelacs de Hopf est un des modèles les plus simples étudiés en théorie des nœuds. C est l entrelacs non trivial et non connexe le plus simple. Il… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”