Ensemble image
- Ensemble image
-
Image (mathématiques)
En mathématiques, on dit que y est l'image de x par la fonction f si y = f(x). Par extension on appelle image d'une partie E par une fonction f l'ensemble des éléments y pour lesquels il existe un antécédent dans E. Pour chaque y de l'ensemble image on peut trouver un élément x de l'ensemble de définition, tel que y = f(x).
Cette terminologie n'est pas réservée aux seules fonctions d'une variable réelle mais à toute transformation ; ainsi on parle de l'image de la figure par symétrie.
L'image ne doit pas être confondu avec l'ensemble d'arrivée (ou codomaine) de f. Pour une fonction donnée f: A → B, l'ensemble de définition est A et l'ensemble d'arrivée est B. L'image f(A), est en général seulement un sous-ensemble de B. f(A) = B si et seulement si f est une surjection.
- Portail des mathématiques
Catégorie : Théorie des ensembles
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Ensemble image de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
IMAGE — Même limitée aux arts visuels, l’image ne peut être séparée des racines profondes qu’elle a dans la mémoire, l’imagination, la pensée ou le rêve. L’image est sans nul doute l’objet de réflexion le plus rebelle aux classifications par genres et… … Encyclopédie Universelle
Ensemble Fini — En mathématiques, un ensemble E est dit fini si et seulement s il existe un entier n et une bijection de E sur l ensemble des entiers naturels strictement plus petits que n, en particulier, si n = 0, E est l ensemble vide qui est donc bien fini.… … Wikipédia en Français
Ensemble fini — En mathématiques, un ensemble E est dit fini si et seulement s il existe un entier n et une bijection de E sur l ensemble des entiers naturels strictement plus petits que n, en particulier, si n = 0, E est l ensemble vide qui est donc bien fini.… … Wikipédia en Français
Ensemble Dénombrable — En mathématiques, un ensemble est dit dénombrable, ou infini dénombrable, lorsque ses éléments peuvent être listés sans omission ni répétition dans une suite indexée par les entiers. Certains ensembles infinis, au contraire, contiennent trop d… … Wikipédia en Français
Ensemble Flou — La théorie des sous ensembles flous[1] est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh[2] en 1965 afin de représenter mathématiquement l imprécision relative à certaines classes d objets et… … Wikipédia en Français
Ensemble denombrable — Ensemble dénombrable En mathématiques, un ensemble est dit dénombrable, ou infini dénombrable, lorsque ses éléments peuvent être listés sans omission ni répétition dans une suite indexée par les entiers. Certains ensembles infinis, au contraire,… … Wikipédia en Français
Image Réciproque — L image réciproque d une partie B d un ensemble Y par une application est le sous ensemble de X constitué des éléments dont l image par f appartient à B : . Exemple : Considérons l application , définie par … Wikipédia en Français
Image reciproque — Image réciproque L image réciproque d une partie B d un ensemble Y par une application est le sous ensemble de X constitué des éléments dont l image par f appartient à B : . Exemple : Considérons l application , définie par … Wikipédia en Français
Ensemble De Cantor — En mathématiques, l ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor) est un sous ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s agit d un ensemble fermé du segment… … Wikipédia en Français
Ensemble de cantor — En mathématiques, l ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor) est un sous ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s agit d un ensemble fermé du segment… … Wikipédia en Français