Digue

Digue
Page d'aide sur l'homonymie Pour les articles homonymes, voir Digue (homonymie).
On distingue sur cette photo les digues construites dans le lit majeur, et le lit mineur marqué par les alignements d'arbres de la berge (Red River, inondation du printemps 1997, Grand Forks, Nord-Dakota et East Grand Forks, Minnesota, USA). Ces endiguements déplacent et aggravent l'inondation plus qu'ils ne la traitent.
Exemple de rivière (Linth, Suisse) endiguée, avec petite zone d'expansion de crue enherbée
Digue néerlandaise de protection contre la mer
Digue circulable entre IJsselmeer et Nordsee
Entretien par pâturage extensif de moutons

Une digue est un remblai longitudinal, naturel ou artificiel, le plus souvent composé de terre. La fonction principale de cet ouvrage est d’empêcher la submersion des basses-terres se trouvant le long de la digue par les eaux d'un lac, d'une rivière ou de la mer.

Les digues les plus célèbres se trouvent aux Pays-Bas, l'Afsluitdijk (ou digue de fermeture) en est l'exemple le plus impressionnant.

Les digues les plus hautes sont celles des barrages hydroélectriques, avec par exemple presque 300 m de haut pour la digue de terre du barrage de Nourek (Tadjikistan, qui sera dépassée par celle du barrage de Vakhch (335 mètres) quand elle sera terminée.

Alors que les digues se sont beaucoup étendues et multipliées de par le monde, jusqu'au début des années 2000 « étonnamment peu d'attention a été accordée aux conséquences écologiques de la défense côtière »[1], ce qui a justifié un programme de recherche financé par l'Europe sur les moyens de produire des digues à moindre impact écologique[1].

Sommaire

Grands types de digues

On peut distinguer :

  • les digues de protection contre les inondations. Elles sont situées dans le lit majeur d'un cours d'eau ou le long du littoral, parallèlement à la rive et destinées à contenir les eaux de celui-ci à l'extérieur des digues. Elles portent alors parfois le nom de levée ; c'est ce qu'on trouve, par exemple, sur le Mississippi[2].
  • les digues de canaux (d'irrigation, hydroélectriques, ...), les canaux sont généralement alimentés artificiellement, les digues de canaux servent à contenir l'eau à l'intérieur du canal.
    Les remblais composant des barrages sont parfois appelés digues (exemple : digue d'étang), mais pour éviter toute confusion, il n'est pas recommandé d'employer le mot digue pour désigner un ouvrage transversal qui barre un cours d'eau ;
  • les jetées ou digues portuaires, plus ou moins longues faisant à la fois office de brise-lame et d'écran aux vagues. N'ayant qu'une une fonction de protection contre les vagues et courants, elles n'ont pas vocation à être étanches ; Certaines digues sont basses et constituées de blocs de pierre qui atténuent les vagues sans empêcher l'eau d'y circuler[3],[4],[5].
  • les ouvrages de protection contre la mer, de plus en plus nombreux, et qui constituent par exemple une grande partie du littoral des Pays-Bas, isolant et protégeant les polders de la mer ;

Depuis les années 1990, on voit aussi apparaître :

  • des digues dites à bermes reprofilables ; ce sont des digues marines conçues pour la houle puisse les remodeler, de manière à atteindre un profil en S plus stable [6] ;
  • des digues dites « digues écologiques » ; elles visent à limiter[7] ou en partie compenser leur impact écologique ; ce sont des défenses côtières (ou fluviales), auxquelles on a intégré une vocation de récif artificiel, de support de faune et algues marines ou de filtration ou amélioration de la qualité de l'eau ou un intérêt éco-touristique. Elles peuvent alors être intégrées dans un dispositif compensateur de perte ou fragmentation d'habitats littoraux ou sédimentaires. Elles peuvent s'intégrer dans une trame verte et bleue ou une trame bleue marine. Des études visent à mieux comprendre comment elles peuvent contribuer à réduire ou compenser des impacts d'engiguements.
    Le projet DELOS [8] a - en Europe - évalué le potentiel de colonisation de divers types de digues par l'épibenthos marin. Il visait aussi à étudier les similitudes entre digues et habitats rocheux naturels. Les digues classiques sont de médiocres substituts aux côtes rocheuses, mais des communautés épibiontes qualitativement assez similaires à celles de côtes rocheuses naturelles peuvent coloniser des milieux artificiels, si ce nouvel habitat est régi par les mêmes facteurs physiques et biologiques que dans la nature[8] [9]. Les épibiontes sont toutefois moins diversifiés et moins abondants sur les structures artificielles, et les études faites sur des brise-lames de 10 à 30 ans montrent que même après 30 ans, la colonisation est incomplète et que la vie y est plus pauvre que sur des structures rocheuses naturelles [10], et en outre les digues classiques offrent des habitats aux structures bien moins complexes et exposent, en général, les organismes qui les colonisent à plus de perturbations anthropiques que sur un rivage naturel[8].
    Le programme DELOS a débouché sur des propositions de critères à intégrer dans la conception et la construction de systèmes de digues, pour minimiser leurs impacts écologiques (dont les changements hydrosédimentologiques, en termes de risque de propagation d'espèces exotiques, nuisibles ou invasives, ou pour améliorer le recrutement des poissons ou la promotion de divers assemblages écologiques intéressants pour l'éco-tourisme[1]) et permettre une gestion restauratoire ou plus ciblée la biodiversité[8]. Le programme DELOS a aussi inclus des évaluations socio-economics de type coût-bénéfice[11].
    Le principe du récif artificiel et l'utilisation (génie écologique) de la faune pour la fixation de sédiments (par un lit de jeunes moules[12] par exemple) ou l'épuration (moules, huitres[13].) et la fixation des substrats (oyats et saules pour des substrats émergés[13]) peuvent, avec certaines limites, être étendus à d'autres éléments littoraux ou portuaires (épis, darses portuaires...), mais « Pour bien comprendre et gérer les défenses côtières, les objectifs de gestion de l'environnement doivent être clairement énoncées et intégrées dans la planification, la construction et toutes les étapes du suivi »[1].
    La partie émergée de digues de sable peut aussi être entretenue par un pâturage extensif. Parfois , sur les longs littoraux de sable (de la mer Baltique par exemple), les digues ou épis sont les seuls substrats rocheux disponibles. Ils peuvent être colonisés, y compris par des espèces peu mobiles de poissons, dont les larves peuvent être apportées par le courant. Le type de substrat, l'âge du "récif" et le contexte semblent fortement différencier les communautés qui s'y installent, y compris parfois d'espèces invasives et/ou exotiques[14]. Le nombre croissant de digues et d'épis en zone sableuse, en Méditerranée notamment, est une source de modification ou de dégradation de la biodiversité jugée préoccupante par certains scientifiques (quelques espèces très communes (moules et Enteromorpha intestinalis) voire invasives (algues vertes telle que Codium fragile ssp. tomentosoides [15],[16], ou algues filamenteuses) peuvent proliférer, éventuellement au détriment d'écosystèmes plus complexes et d'espèces locales ou endémiques)[17]; Les causes et conséquences de la pauvreté en espèces observées et les possibilités d'améliorer la gestion des structures de défense et d'autres constructions artificielles sont encore mal comprises et discutées[18]. Localement, la modification de la turbidité[19] ou la pêche à pied[20] semble avoir un impact sur les espèces telles que par exemple les moules ou crustacés[18]. Pour les ouvrages (béton ou maçonnerie de pierre) de la zone intertidale ou exposées à l'air à marée basse (dans les ports), on a clairement montré que l'offre en anfractuosités et refuges est déterminante pour la plupart des espèces qui ne colonisent pas de surfaces lisses[21]. Il semble facile d'améliorer la capacité d'accueil des murs et digues artificielles, pour de nombreuses espèces fixées ou non fixées (mollusques brouteurs de type polyplacophores[21] ou crabes par exemple) en complexifiant leur surface[21]. Toutefois, les structures (épis, digues), du côté où elles ralentissent le courant peuvent négativement affecter la biodiversité, en favorisant quelques espèces d'algues éphémères, au détriment d'animaux fixés tels que balanes et patelles et de plantes solidement fixées (algues à frondes)[22]. Ces effets sont évidents du début à la fin des stades de succession, ce qui laisse penser qu'artificiellement abriter des rivages exposés peut bouleverser les assemblages écologiques, en changeant les espèces dominantes et le réseau énergétique et trophique [22], alors même que la biodiversité naturelle et un des facteurs de résilience et de limitation de l'invasivité d'espèces introduites [23],[24]

Matériaux

Les digues peuvent être construites en dur, sur d'importantes fondations (c'est le cas pour les digues de mer), ou être constituées de simples levées de terre, voire de sable et végétalisées. Aux Pays-Bas la végétation des digues les plus fragiles sont entretenues par des moutons de manière à ne pas les dégrader par des engins lourds.

Montées des océans

Le réchauffement climatique semble avoir déjà amorcé une montée de la mer. Les phénomènes d'érosion du trait de côte et de dégradation des digues tendent à augmenter (70 % du littoral européen environ est touché). Certains pays commencent à relever leurs digues (Pays-Bas, une partie de l'Angleterre..) et/ou à abandonner à la mer certains polders (Pays-Bas).

Mécanismes de rupture d'une digue

L’objectif alloué aux digues est de contenir les flots pour éviter une inondation du ou des vals. Mais sans une bonne conception, un suivi et un entretien régulier de la digue, des brèches peuvent apparaître et provoquer des inondations. Quatre types de ruptures de digues peuvent être rencontrés.

Érosion de surface par surverse

Érosion régressive due à une surverse sur une digue de Loire (levée)

La surverse, consistant en un débordement de la crête de la levée, conduit en général rapidement à une brèche. Quelques minutes après le débordement, le parement commence à s’éroder. Les matériaux sont arrachés par la force du courant en pied de digue. La fouille qui apparaît alors en pied de digue contribue à imprégner le corps de celle-ci. Saturé d’eau, le parement glisse alors par pans entiers. Les matériaux sont emportés par le courant, ce qui conduit rapidement à la ruine complète de la levée[25].

Les études des crues majeures n’ont pas permis de déterminer la hauteur et la durée des lames de crue qui ont engendré cette rupture par surverse. Tout au plus peut-on préciser que le caractère sableux du remblai et l’hétérogénéité dans sa compacité sont des facteurs aggravants. En outre un profil en long irrégulier peut induire des effets de surverse accrus aux points bas de la levée[25].

Érosion externe par affouillement

Érosion externe par affouillement.

Côté fleuve, les talus des levées peuvent subir les effets des courants hydrauliques qui peuvent provoquer des érosions à leur base. Il en résulte un affaiblissement des caractéristiques mécaniques du corps de remblai et un raidissement de la pente du talus. Ceci peut entraîner des affaissements de matériaux qui à leur tour engendrent des perturbations hydrauliques sous forme de tourbillons et des érosions. Par rupture successive du talus, une brèche peut se former et conduire à la rupture complète de la levée[26].

Les facteurs qui peuvent contribuer à l’apparition de ce phénomène sont au nombre de trois[26] :

  • La vitesse moyenne de l’eau. Ainsi les digues en proximité immédiate du lit mineur et celles situées dans un rétrécissement du lit majeur sont particulièrement vulnérables.
  • les perturbations hydrauliques locales,
  • la nature et la protection du talus côté fleuve. Un perré résiste ainsi à une vitesse de 4 m/s alors qu’un talus enherbé est vulnérable à partir de 1,5 m/s.

Érosion interne par effet de renard hydraulique

rupture de levée par effet de renard.

Les hétérogénéités de perméabilité dans le corps de la levée peuvent être à l’origine de circulation d’eau. Selon la nature des matériaux et la charge hydraulique, on peut atteindre le gradient hydraulique critique qui provoque localement l’érosion interne. De part en part, cette érosion peut se propager jusqu’à former une vraie galerie qui provoque une brèche dans la levée par effondrement des matériaux[26].

Les facteurs aggravants sont[26] :

  • la présence de galeries, comme celles que peuvent faire certains animaux comme les ragondins ou les castors ;
  • une mauvaise étanchéité entre couches de remblais,
  • une hétérogénéité des matériaux.
  • Les racines d'arbres abattus qui, en pourrissant, laissent pénétrer l'eau sous les digues.

Rupture d’ensemble

rupture d’ensemble d’une levée due à de fortes pressions et à une fragilité de l’ouvrage. Une consolidation est nécessaire côté val.

Une rupture de masse de la levée peut intervenir en cas d’instabilité générale du corps de remblai[27].

On pense qu’une rupture de masse peut intervenir quand les trois facteurs suivants sont réunis :

  • profil de digue étroit avec pente de talus fortes ;
  • piézométrie élevée dans la digue en absence de drainage ;
  • Faibles caractéristiques mécaniques des matériaux.

Législation

En tant qu'ouvrages de protection, les digues font l'objet de législations particulières (entretien, servitudes...).

En France

Définitions : Pour le Code de l'environnement [28], les digues sont des ouvrages « de protection contre les inondations fluviales, généralement longitudinal au cours d’eau, des digues qui ceinturent des lieux habités, des digues d’estuaires et de protection contre les submersions marines, des digues des rivières canalisées et des digues de protection sur les cônes de déjection de torrents ». En 2009, « il existe 800 barrages de plus de 10 m de hauteur et 8 000 km de digues de protection contre les inondations et les submersions (d’une certaine importance). On estime, selon les premiers recensements de quelques départements, qu’il pourrait exister plus de 10 000 ouvrages hydrauliques de dimension plus modeste dont l’inventaire, en cours, nécessite un effort important » [29]

  • Un décret d'application (du 11 décembre 2007) porte sur la sécurité des ouvrages hydrauliques (et sur le comité technique permanent des barrages et des ouvrages hydrauliques) [30], les structures gestionnaires de cours d’eau doivent par exemple faire réaliser un diagnostic de sûreté et une étude de dangers des ouvrages hydrauliques de protection contre les inondations, ce qui introduit de nouvelles contraintes d’ordres juridiques, réglementaires et financières, alors que dans certains cas, pour des ouvrages anciens, on ne sait parfois pas qui est officiellement responsable ou propriétaire de certains ouvrages.
En particulier, « Avant le 31 décembre 2009, le propriétaire ou l'exploitant de toute digue de la classe A, B ou C soumise aux articles L. 214-1 et L. 214-2 du code de l'environnement ou autorisée en application de la loi du 16 octobre 1919 susvisée procède à un diagnostic de sûreté de cet ouvrage. Un arrêté du ministre chargé de l'environnement précise le contenu de ce diagnostic » [30].
  • un arrêté du 12 juin 2008 définit le contenu des études de dangers qui doivent être réalisées par le propriétaire ou l'exploitant d'un barrage ou d'une digue.
  • Une circulaire [31] du 8 juillet 2008 (non publiée au JO) du ministère en charge de l'Écologie, annule et remplace les circulaires 70-15 du 14 août 1970, et rappelle et précise le rôle des préfets et des services déconcentrés de l'État en matière de contrôle de la sécurité des digues et barrages au titre du décret du 11 décembre 2007[32].
  • Une Circulaire [29] du 31 juillet 2009 précise encore l’organisation du contrôle de la sécurité des ouvrages hydrauliques

Notes

  1. a, b, c et d L. Airoldi, M. Abbiati, M.W. Beck, S.J. Hawkins, P.R. Jonsson, D. Martin, P.S. Moschella, A. Sundelöf, R.C. Thompson and P. Åberg ; Low Crested Structures and the Environment ; An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures ; Coastal Engineering ; Volume 52, Issues 10-11, November 2005, Pages 1073-1087 ; doi:10.1016/j.coastaleng.2005.09.007 (Résumé)
  2. Flooding threat along Mississippi River is a test of man vs. nature, Washington Post, 22 mai 2011
  3. Garcia, N., Lara, J.L., Losada, I.J., 2004. 2-D Numerical Analysis of near-field flow at low-crested permeable breakwaters. Coastal Engineering, 51, 991-1020.
  4. Vidal, C., Lomonaco, P., Migoya L., Archetti R., Turchetti M., Sorci Μ., Sassi G., 2002. Laboratory experiments on flow around and inside LCS structures. Description of tests and data base. DELOS Project Technical Report, 19 pp.
  5. Environmental Design of Low Crested Costal Defence Structures, DELOS Final Report (contrat européen EVK3-CT-2000-00041), juin 2004, Accès au Rapport en PDF, 200 pages
  6. Yves STASSEN, Isabelle LESPRIT ; Conception d'une digue à berme reprofilable pour le projet d'extension du port de Roscoff-Bloscon (pp. 761-770) DOI:10.5150/jngcgc.2010.085-S
  7. article intitulé Une digue qui limite l’impact écologique (6 février 2004, Industrie et Technologies)
  8. a, b, c et d P.S. Moschella, M. Abbiati, P. Åberg, L. Airoldi, J.M. Anderson, F. Bacchiocchi, F. Bulleri, G.E. Dinesen, M. Frost, f, E. Gacia, L. Granhag, P.R. Jonsson, M.P. Satta, A. Sundelöf, R.C. Thompson and S.J. Hawkins ; Coastal Engineering Volume 52, Issues 10-11, November 2005, Pages 1053-1071 Low Crested Structures and the Environment  ; doi:10.1016/j.coastaleng.2005.09.014 ; Low-crested coastal defence structures as artificial habitats for marine life: Using ecological criteria in design (Résumé, en anglais)
  9. S. Perkol-Finkel, N. Shashar et Y. Benayahu, Can artificial reefs mimic natural reef communities? The roles of structural features and age ; Marine Environmental Research Volume 61, Issue 2, March 2006, Pages 121-135 doi:10.1016/j.marenvres.2005.08.001 (Résumé)
  10. John Burt, Aaron Bartholomew and Peter F. Sale, Benthic development on large-scale engineered reefs: A comparison of communities among breakwaters of different age and natural reefs ; Ecological Engineering Volume 37, Issue 2, February 2011, Pages 191-198 doi:10.1016/j.ecoleng.2010.09.004 (Résumé)
  11. DELOS ; Design tools related to socio-economics 15.1. General description of cost benefice analysis, consulté 2011/03/08
  12. Modeling the influence of a young mussel bed on fine sediment dynamics on an intertidal flat in the Wadden Sea Original Research Article Ecological Engineering, Volume 36, Issue 2, February 2010, Pages 145-153 B. van Leeuwen, D.C.M. Augustijn, B.K. van Wesenbeeck, S.J.M.H. Hulscher, M.B. de Vries (Résumé)
  13. a et b Bas W. Borsj, Bregje K. van Wesenbeeck, Frank Dekker, Peter Paalvast, Tjeerd J. Bouma, Marieke M. van Katwijk, et nd Mindert B. de Vries, ; How ecologicalnext term engineering can serve in coastal protection ; Ecological Engineering Volume 37, Issue 2, February 2011, Pages 113-122  ; doi:10.1016/j.ecoleng.2010.11.027 (Résumé)
  14. The onset of fish colonization in a coastal defence structure (Chioggia, Northern Adriatic Sea) ; Estuarine, Coastal and Shelf Science, Volume 78, Issue 1, 1 June 2008, Pages 166-178 M. Pizzolon, E. Cenci, C. Mazzoldi (Résumé)
  15. Fabio Bulleri, Laura Airoldi ; Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the north Adriatic Sea ; (on line : 2005/10/31) DOI: 10.1111/j.1365-2664.2005.01096.x ; Journal of Applied Ecology Journal of Applied Ecology ; Volume 42, Issue 6, pages 1063–1072, Décembre 2005
  16. Bulleri, F., Abbiati, M. & Airoldi, L. (in press) The colonisation of artificial human-made structures by the invasive alga Codium fragile ssp. tomentosoides in the north Adriatic Sea (NE Mediterranean). Hydrobiologia,
  17. Stefano Vaselli, Fabio Bulleri, Lisandro Benedetti-Cecchi ; Hard coastal-defence structures as habitats for native and exotic rocky-bottom species ; Marine Environmental Research, Volume 66, Issue 4, October 2008, Pages 395-403 (Résumé)
  18. a et b Francesca Bacchiocchi, Laura Airoldi  ; Distribution and dynamics of epibiota on hard structures for coastal protection ; Estuarine, Coastal and Shelf Science, Volume 56, Issues 5-6, Avril 2003, Pages 1157-1166 (Résumé)
  19. J. I. Saiz-Salinas, J. Urkiaga-Alberdi ; Faunal responses to turbidity in a man-modified bay (Bilbao, Spain) ; Marine Environmental Research, Volume 47, Issue 4, May 1999, Pages 331-347 (Résumé)
  20. Airoldi, L., Bacchiocchi, F., Cagliola, C., Bulleri, F. & Abbiati, M. (2005) Impact of recreational harvesting on assemblages in artificial rocky habitats. Marine Ecology Progress Series, 299, 55–66. (Résumé),
  21. a, b et c J. Moreira, M.G. Chapman, A.J. Underwood ; Maintenance of chitons on seawalls using crevices on sandstone blocks as habitat in Sydney Harbour, Australia  ; Journal of Experimental Marine Biology and Ecology, Volume 347, Issues 1-2, 24 August 2007, Pages 134-143 (Résumé)
  22. a et b Gustavo M. Martins, André F. Amaral, Francisco M. Wallenstein, Ana I. Neto Influence of a breakwater on nearby rocky intertidal community structure  ; Marine Environmental Research, Volume 67, Issues 4-5, May-June 2009, Pages 237-245 (Résumé)
  23. Kennedy, T.A., Naeem, S., Howe, K.M., Knops, J.M.H., Tilman, D. & Reich, P. (2002) Biodiversity as a barrier to ecological invasion. Nature, 417, 636–638.(Résumé)
  24. Stachowicz, J.J., Fried, H., Whitlatch, R.B. & Osman, R.W. (2002) Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology, 83, 2575–2590. ([2575:BIRAME2.0.CO;2 Résumé])
  25. a et b Patrice Mériaux,Paul Royet et Cyril Folton (2004), Surveillance, entretien et diagnostic des digues de protection contre les inondations, p 55-57
  26. a, b, c et d Patrice Mériaux,Paul Royet et Cyril Folton (2004), Surveillance, entretien et diagnostic des digues de protection contre les inondations, p 58-61
  27. Patrice Mériaux,Paul Royet et Cyril Folton (2004), Surveillance, entretien et diagnostic des digues de protection contre les inondations, p 64-67
  28. article R. 214-113 du Code de l'environnement
  29. a et b Circulaire du 31 juillet 2009 relative à l’organisation du contrôle de la sécurité des ouvrages hydrauliques NOR : DEVP0918731C
  30. a et b Décret n° 2007-1735 du 11 décembre 2007 relatif à la sécurité des ouvrages hydrauliques et au comité technique permanent des barrages et des ouvrages hydrauliques et modifiant le code de l'environnement
  31. Circulaire du 8 juillet 2008, "Contrôle de la sécurité des ouvrages hydrauliques au titre des dispositions mises en place par le décret 2007-1735 du 11 décembre 2007 (articles R. 214-112 à R. 214-147 du Code de l’environnement)", non publiée
  32. Sécurité des ouvrages hydrauliques : précisions sur les contrôles Le 08 septembre 2008, Journal de l'environnement

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes

Bibliographie


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Digue de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • digue — [ dig ] n. f. • 1360; dike 1373; moy. néerl. dijc 1 ♦ Longue construction destinée à contenir les eaux (⇒ endiguer). Digues fluviales. Digue de retenue d eau dans le voisinage d une écluse. ⇒ chaussée, levée. Digue faisant une avancée en mer. ⇒… …   Encyclopédie Universelle

  • digue — DIGUE. s. fém. Amas de terre, de pierres, de bois, etc. pour servir de rempart contre l eau, et principalement contre les flots de la mer. Faire une digue. Ouvrir une digue. Rompre la digue. Couper la digue. Les digues de Hollande. [b]f♛/b] Il se …   Dictionnaire de l'Académie Française 1798

  • digue — DIGUE. s. f. Amas de terre, de pierres, de bois &c. pour servir de rempart contre l eau, & principalement contre les flots de la mer. Faire une digue. ouvrir une digue. rompre la digue. les assiegez avoient coupé la digue par où on pouvoit aller… …   Dictionnaire de l'Académie française

  • Digue — Digue, n. [F. See {Dike}.] A bank; a dike. [Obs.] Sir W. Temple. [1913 Webster] || …   The Collaborative International Dictionary of English

  • Digue, la — (spr. Dihg), Insel, zur Gruppe der Seychellen (nordöstlich von Madagascar) gehörig …   Pierer's Universal-Lexikon

  • digué — digué, ée (di ghé, ghée) part. passé. Garni de digues. Une rivière diguée …   Dictionnaire de la Langue Française d'Émile Littré

  • DIGUE — s. f. Amas de terre, de pierres, de bois, etc., pour servir de rempart contre l eau, et principalement contre les flots de la mer. Faire une digue. Ouvrir une digue. Rompre la digue. Couper la digue. Les digues de Hollande.   Il se dit au figuré… …   Dictionnaire de l'Academie Francaise, 7eme edition (1835)

  • DIGUE — n. f. Amas ou construction de terre, de pierres, de bois, etc., pour servir de rempart contre l’eau d’un fleuve, d’un torrent, d’un lac, et principalement contre les flots de la mer. Faire une digue. Ouvrir une digue. Rompre la digue. Couper la… …   Dictionnaire de l'Academie Francaise, 8eme edition (1935)

  • digue — (di gh ) s. f. 1°   Levée en terre ou en maçonnerie pour contenir des eaux. Les digues de Hollande. Couper une digue. •   Votre miséricorde prend plaisir à surmonter ma misère ; elle s élève comme un torrent au dessus d une digue, FÉN. t. XVIII,… …   Dictionnaire de la Langue Française d'Émile Littré

  • digue — bordigue digue endigue prodigue …   Dictionnaire des rimes

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”