Classification AMS

Classification AMS
Page d'aide sur l'homonymie Pour les articles homonymes, voir MSC et AMS.

La classification AMS, appelée aussi Mathematics Subject Classification (MSC), est une classification établie par l'American Mathematical Society (AMS).

  • 00-xx : General
  • 01-xx : History and biography [See also the classification number -03 in the other sections]
  • 03-xx : Mathematical logic and foundations
  • 04-xx : This section has been deleted {For set theory see 03Exx}
  • 05-xx : Combinatorics {For finite fields, see 11Txx}
  • 06-xx : Order, lattices, ordered algebraic structures [See also 18B35]
  • 08-xx : General algebraic systems
  • 11-xx : Number theory
  • 12-xx : Field theory and polynomials
  • 13-xx : Commutative rings and algebras
  • 14-xx : Algebraic geometry
  • 15-xx : Linear and multilinear algebra; matrix theory
  • 16-xx : Associative rings and algebras {For the commutative case, see 13-xx}
  • 17-xx : Nonassociative rings and algebras
  • 18-xx : Category theory; homological algebra {For commutative rings see 13Dxx, for associative rings 16Exx, for groups 20Jxx, for topological groups and related structures 57Txx; see also 55Nxx and 55Uxx for algebraic topology}
  • 19-xx : $K$-theory [See also 16E20, 18F25]
  • 20-xx : Group theory and generalizations
  • 22-xx : Topological groups, Lie groups {For transformation groups, see 54H15, 57Sxx, 58-xx. For abstract harmonic analysis, see 43-xx}
  • 26-xx : Real functions [See also 54C30]
  • 28-xx : Measure and integration {For analysis on manifolds, see 58-xx}
  • 30-xx : Functions of a complex variable {For analysis on manifolds, see 58-xx}
  • 31-xx : Potential theory {For probabilistic potential theory, see 60J45}
  • 32-xx : Several complex variables and analytic spaces {For infinite-dimensional holomorphy, see 46G20, 58B12}
  • 33-xx : Special functions (33-xx deals with the properties of functions as functions) {For orthogonal functions, see 42Cxx; for aspects of combinatorics, see 05Axx; for number-theoretic aspects, see 11-xx; for representation theory, see 22Exx}
  • 34-xx : Ordinary differential equations
  • 35-xx : Partial differential equations
  • 37-xx : Dynamical systems and ergodic theory [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-xx]
  • 39-xx : Difference and functional equations
  • 40-xx : Sequences, series, summability
  • 41-xx : Approximations and expansions {For all approximation theory in the complex domain, see 30Exx, 30E05 and 30E10; for all trigonometric approximation and interpolation, see 42Axx, 42A10 and 42A15; for numerical approximation, see 65Dxx}
  • 42-xx : Fourier analysis
  • 43-xx : Abstract harmonic analysis {For other analysis on topological and Lie groups, see 22Exx}
  • 44-xx : Integral transforms, operational calculus {For fractional derivatives and integrals, see 26A33. For Fourier transforms, see *42A38, 42B10. For integral transforms in distribution spaces, see 46F12. For numerical methods, see 65R10}
  • 45-xx : Integral equations
  • 46-xx : Functional analysis {For manifolds modeled on topological linear spaces, see 57N20, 58Bxx}
  • 47-xx : Operator theory
  • 49-xx : Calculus of variations and optimal control; optimization [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-xx]
  • 51-xx : Geometry {For algebraic geometry, see 14-xx}
  • 52-xx : Convex and discrete geometry
  • 53-xx : Differential geometry {For differential topology, see 57Rxx. For foundational questions of differentiable manifolds, see 58Axx}
  • 54-xx : General topology {For the topology of manifolds of all dimensions, see 57Nxx}
  • 55-xx : Algebraic topology
  • 57-xx : Manifolds and cell complexes {For complex manifolds, see 32Qxx}
  • 58-xx : Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-xx, 47Hxx, 53Cxx] {For geometric integration theory, see 49Q15}
  • 60-xx : Probability theory and stochastic processes {For additional applications, see 11Kxx, 62-xx, 90-xx, 91-xx, 92-xx, 93-xx, 94-xx]
  • 62-xx : Statistics
  • 65-xx : Numerical analysis
  • 68-xx : Computer science {For papers involving machine computations and programs in a specific mathematical area, see Section -04 in that area}
  • 70-xx : Mechanics of particles and systems {For relativistic mechanics, see 83A05 and 83C10; for statistical mechanics, see 82-xx}
  • 73-xx : This section has been deleted {For mechanics of solids, see 74-xx}
  • 74-xx : Mechanics of deformable solids
  • 76-xx : Fluid mechanics {For general continuum mechanics, see 74Axx, or other parts of 74-xx}
  • 78-xx : Optics, electromagnetic theory {For quantum optics, see 81V80}
  • 80-xx : Classical thermodynamics, heat transfer {For thermodynamics of solids, see 74A15}
  • 81-xx : Quantum theory
  • 82-xx : Statistical mechanics, structure of matter
  • 83-xx : Relativity and gravitational theory
  • 85-xx : Astronomy and astrophysics {For celestial mechanics, see 70F15}
  • 86-xx : Geophysics [See also 76U05, 76V05]
  • 90-xx : Operations research, mathematical programming
  • 91-xx : Game theory, economics, social and behavioral sciences
  • 92-xx : Biology and other natural sciences
  • 93-xx : Systems theory; control {For optimal control, see 49-xx}
  • 94-xx : Information and communication, circuits
  • 97-xx : Mathematics education

Lien externe


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Classification AMS de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Ams — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. {{{image}}}   Sigles d une seule lettre   Sigles de deux lettres > Sigles de trois lettres …   Wikipédia en Français

  • AMS — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom.   Sigles d’une seule lettre   Sigles de deux lettres > Sigles de trois lettres   Sigles de quatre lettres …   Wikipédia en Français

  • Classification of finite simple groups — Group theory Group theory …   Wikipedia

  • Classification des groupes simples finis — La classification des groupes finis simples, aussi appelée le théorème énorme, est un vaste corps de travail en mathématiques, principalement publié entre environ 1955 et 1983, qui a pour but de classer tous les groupes simples finis. En tout, le …   Wikipédia en Français

  • Classifications AMS — Classification AMS La Classificaction AMS, appelée aussi Mathematics Subject Classification (MSC) est une classification établie par l American Mathematical Society. 00 xx General 01 xx History and biography [See also the classification number 03 …   Wikipédia en Français

  • Mathematics Subject Classification — The Mathematics Subject Classification (MSC) is an alphanumerical classification scheme collaboratively produced by staff of and based on the coverage of the two major mathematical reviewing databases, Mathematical Reviews and Zentralblatt MATH.… …   Wikipedia

  • Langlands classification — In mathematics, the Langlands classification is a classification of irreducible representations of a reductive Lie group G , suggested by Robert Langlands (1973). More precisely, it classifies the irreducible admissible ( g , K ) modules,for g a… …   Wikipedia

  • USS Cardinal (AMS-4) — USS Cardinal (MSC(O) 4/AMS 4/YMS 179) was a YMSsub|135 built for the United States Navy during World War II. She was the third ship in the U.S. Navy to be named for the cardinal.History Cardinal was laid down as YMS 179 on 27 October 1942 by… …   Wikipedia

  • Spatial Synoptic Classification system — Based upon the Bergeron air mass classification scheme is the Spatial Synoptic Classification system, or SSC. There are six categories within the SSC scheme: Dry Polar (similar to continental polar), Dry Moderate (similar to maritime superior),… …   Wikipedia

  • Nielsen-Thurston classification — In mathematics, Thurston s classification theorem characterizes homeomorphisms of a compact surface. William Thurston s theorem completes the work initiated by Jakob Nielsen in the 1930s.Given a homeomorphism f : S rarr; S , there is a map g… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”