A.W. Pollard

A.W. Pollard

Alfred William Pollard

"How at the Castle of Corbin a Maiden Bare in the Sangreal and Foretold the Achievements of Galahad", Illustration d'Arthur Rackham pour The Romance of King Arthur and His Knights of the Round Table (1917), d'Alfred Pollard.

Alfred William Pollard est un bibliographe et bibliothécaire britannique né le 14 août 1859 à Londres et mort le 8 mars 1944 à Wimbledon.

Après des études à la King's College School de Londres et au St John's College de l'université d'Oxford, Alfred Pollard rejoint la bibliothèque du British Museum (aujourd'hui la British Library) en 1883, comme assistant au département des imprimés. Il en devient directeur adjoint (assistant keeper) en 1909 et directeur (garde, keeper) en 1919.

Professeur de bibliographie anglaise à l'université de Londres, secrétaire honoraire de la Bibliographical Society (1893-1934), responsable pendant plus de trente ans de la revues The Library (1903-1934), A. W. Pollard est l'auteur avec G.R. Redgrave du Short-Title Catalogue of English Books Printed in England,Scotland, and Ireland, and of English books Printed Abroad, 1475-1640 (Londres, 1926), première tentative de bibliographie nationale, qui préfigure de nombreux travaux actuels.

Il a publié sur un grand nombre de sujets touchant à la littérature anglaise. Il a notamment édité des œuvres de Thomas Malory et une collection de « Fifteenth Century Poetry and Prose ». Ses rigoureux travaux sur Shakespear ont joué un grand rôle dans l'appréhension actuelle de son œuvre.

Principaux ouvrages

  • Records of the English Bible: The Documents Relating to the Translation and Publication of the Bible in English, 1525-1611, London, Oxford University Press, 1911.
  • Shakespeare Folios and Quartos: A Study in the Bibliography of Shakespeare's Plays, 1909.
  • A New Shakespeare Quarto: Richard II, 1916.
  • Shakespeare's Fight with the Pirates, And the Problem of the Transmission of his Text, 1917.
  • The Foundations of Shakespeare's Text, 1923.
  • Shakespeare's Hand in the Play of Sir Thomas More (with W .W. Greg, Edward Maunde Thompson, John Dover Wilson, and R. W. Chambers), 1923.
  • Short-Title Catalogue of English Books Printed in England,Scotland, and Ireland, and of English books Printed Abroad, 1475-1640, London, 1926
  • Early Illustrated Books: A History of the Decoration and Illustration of Books in the 15th and 16th Centuries, 1927.
  • English Miracle Plays, Moralities and Interludes; Specimens of the Pre-Elizabethan Drama, Oxford, the Clarendon Press, 1927.
  • The Trained Printer and the Amateur, and the Pleasure of Small Books, 1929.
  • A Census of Shakespeare's Plays in Quarto (with Henrietta C. Bartlett), 1939.

Bibliographie

  • Woudhuysen, Henry R., A.E.H., A.W.P.: A Classical Friendship. Tunbridge Wells : Foundling Press and Bernard Quaritch, 2006.
  • Murphy, Gwendoen, and Henry Thomas, A Select Bibiliography of the Writings of Alfred W. Pollard., Oxford : Oxford University Press, 1938.
Ce document provient de « Alfred William Pollard ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article A.W. Pollard de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Pollard — bezeichnet die Pollard Rho Methode nach John M. Pollard die Pollard p 1 Methode nach John M. Pollard eine Stadt in Alabama, siehe Pollard (Alabama) eine Stadt in Arkansas, siehe Pollard (Arkansas) Pollard Schrift, Abugida Pollard ist der… …   Deutsch Wikipedia

  • Pollard (surname) — Pollard is a family name. It may refer to: * A. J. Pollard, British historian * Carl Pollard, American linguist * Dick Pollard, England Test cricketer * Ernest C. Pollard, atomic physicist and biophysicist, son of Sam Pollard * George Pollard,… …   Wikipedia

  • Pollard alphabet — Pollard Pollard Miao Type Abugida with elements of an Alphabet Languages Hmong, Nasu Creator …   Wikipedia

  • Pollard — may refer to:*Pollard (surname) *Pollard, Alabama, a town in the United States *Jonathan Pollard, a spy *Pollard, a tree or animal which has been polled (had its branches, horns or antlers removed): **Pollard, a tree affected by pollarding, a… …   Wikipedia

  • Pollard Meadows, Edmonton — Pollard Meadows is a residential neighbourhood located in the Mill Woods area of south Edmonton, Alberta, Canada. It is a part of the Mill Woods community of Southwood.Development of the neighbourhood, according to the 2001 federal census, began… …   Wikipedia

  • Pollard's p - 1 algorithm — Pollard s p − 1 algorithm is a number theoretic integer factorization algorithm, invented by John Pollard in 1974. It is a special purpose algorithm, meaning that it is only suitable for integers with specific types of factors; it is the simplest …   Wikipedia

  • Pollard's rho algorithm — is a special purpose integer factorization algorithm. It was invented by John Pollard in 1975. It is particularly effective at splitting composite numbers with small factors.Core ideasThe rho algorithm is based on Floyd s cycle finding algorithm… …   Wikipedia

  • Pollard — Pollard, AR U.S. town in Arkansas Population (2000): 240 Housing Units (2000): 105 Land area (2000): 0.293056 sq. miles (0.759011 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.293056 sq. miles (0.759011 sq.… …   StarDict's U.S. Gazetteer Places

  • Pollard Hopewell — (between 1786 and 1789 1 June 1813) was a midshipman in the United States Navy during the War of 1812. He was killed in the battle of the US frigate Chesapeake with the British frigate Shannon .He was the only child of Pollard Hopewell and his… …   Wikipedia

  • POLLARD, SIDNEY — (1925–1998), British economic historian. Born Siegfried Pollak in Vienna, the son of a salesman, Pollard came to England in 1938 on a Kindertransport; his parents perished in the Holocaust. Through the help of charities and British relatives,… …   Encyclopedia of Judaism

  • Pollard's rho algorithm for logarithms — is an algorithm for solving the discrete logarithm problem analogous to Pollard s rho algorithm for solving the Integer factorization problem.The goal is to compute gamma such that alpha ^ gamma = eta(mod N), where eta belongs to the group G… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”