- Sentinelle-3 (satellite)
-
Sentinelle-3
Logo de Sentinelle-3
Caractéristiques Organisation Eumetsat, Agence spatiale européenne Domaine Météorologie Masse 1200 kg Lancement prévu 2013 Lanceur VEGA Durée de vie 7,5 ans Informations générales Sentinelle-3 est le troisième modèle de la famille des satellites Sentinelle.
Il est réalisé par Thales Alenia Space[1], dans le Centre spatial de Cannes Mandelieu, suite à un contrat de 305 M€[2], signé le 14 avril 2008 en présence de Dominique Bussereau, Secrétaire d'État auprès du ministre d'État, ministre de l'écologie, de l'énergie, du Développement durable et de l'aménagement du territoire, chargé des Transports, pour une mission d'océanographie ainsi que de surveillance de la végétation sur les terres émergées, un lancement prévu en 2013[3].
Compatible avec le lanceur européen Vega, ce satellite d’environ 1,2 tonne, basé sur une nouvelle plate-forme dérivée de PRIMA et de PROTEUS, sera équipé de 4 principaux instruments[4],[5].
Sommaire
OLCI
OLCI (Ocean and Land Color Instrument) est un instrument optique dédié à la couleur des océans et des Terres émergées pour assurer notamment une surveillance de l’état des océans (courant, vie marine…) et des zones côtières (pollution, courant…). Cet instrument permettra une meilleure prévision des changements et une meilleure gestion de ses ressources. C’est une version évoluée du spectromètre imageur MERIS qui vole sur Envisat. Il assurera donc la continuité des données, avec cependant, des performances supérieures. Il en aura la même résolution (300 m) mais sa fauchée sera plus large (1250 km) et il sera capable de distinguer 21 couleurs (ou bandes spectrales), contre 15 pour MERIS.
Au dessus des Terres, ces données permettront aux scientifiques de déterminer des paramètres géophysiques de la surface, de classifier des zones (par exemple forêt, désert, zone brulée, cultivée, inondée etc.) et d'en surveiller leur étendue et leur évolution. Au dessus des mers, la mesure de la couleur permet de déterminer la présence de certains constituants, comme par exemple la concentration en plancton, la présence de chlorophylle dans l'eau, le transport de sédiments, la présence de pollution et d'autres paramètres encore.
Les 6 bandes supplémentaires d’OCLI, réparties dans toute la bande spectrale entre 390 et 1040 nm, permettront d’améliorer la qualité des mesures en apportant des corrections atmosphériques plus fines.
OCLI est un spectromètre imageur avec un champ de vue qui s'étend sur 68,6 degrés, transversalement à la trace au sol du satellite. Il est couvert par 5 cameras élémentaires qui sont disposées en éventail dans un plan vertical perpendiculaire au vecteur vitesse du satellite (à la direction de déplacement du satellite). Chaque caméra à un champ de vue de 14,2 degrés.
A la différence de MERIS, le champ de vue d’OLCI est décalé vers l’ouest de 12,6 degrés de façon à éviter les phénomènes de réflexion du Soleil sur la mer, qui perturbent beaucoup les images d’Envisat.
SLSTR
SLSTR (Sea and Land Surface Temperature Radiometer) est un deuxième instrument optique dédié à la mesure de la température de surface des océans et des Terres émergées . Cet instrument surveillera l’impact de l’évolution du climat sur la température des océans et améliorera les prévisions météorologiques grâce à une meilleure compréhension du couplage océan/atmosphère. La mise en commun des données récoltées par ces 2 instruments permettra une surveillance globale de la végétation afin de définir son état et mieux gérer son développement. Cette mission avait été initiée par l’instrument Végétation, installé sur des satellites SPOT développé par Aerospatiale, maintenant, Thales Alenia Space, dans les années 1990[6].
Il s’agit d’une version évoluée du radiomètre AATSR qui vole sur Envisat.
SLSTR est un radiomètre infrarouge à double visée. Son rôle est de mesurer avec une très grande précision la température de surface des océans et des Terres émergées. Il a une fauchée très large de 1 400 kilomètres et peut couvrir la Terre en à peu près 2 jours. Il peut obtenir une cartographie des températures de l'océan avec une précision extrême de 0,1 degré.
SLSTR regarde sous le satellite et à l'arrière. La même zone est ainsi observée sous deux angles différents ce qui permet aux scientifiques - en combinant les deux images - de corriger les effets perturbateurs de l'atmosphère et d'obtenir des mesures très précises de la température. Ces mesures continues et couvrant l'ensemble des océans, sont alors utilisées par les météorologues et les climatologues dans leurs prévisions à court ou long terme.
SLSTR comporte 9 canaux dans le visible et l’infrarouge (3 dans le visible et le proche infrarouge, 3 dans l’infrarouge SW et 3 dans l’infrarouge MW). C’est deux de plus que pour l’AATSR qui en comporte 7. L’ensemble des bandes spectrales couvrent le domaine de 0,556 µm à 12,5 µm. De façon à garantir l’exactitude des mesures radiométriques, les détecteurs infrarouges de SLSTR seront refroidis en permanence de façon à ce que leur température reste stable à quelque 80 kelvins.
SRAL
SRAL (Sar Radar Altimeter) est un radar altimètre, l’instrument principal de la mission topographique de Sentinelle-3 dont l’objectif est de fournir des données opérationnelles non seulement sur le plein océan mais aussi sur les zones côtières, les glaces ou encore sur les eaux continentales comme les lacs et rivières[7].
SRAL est une version évoluée d’altimètre qui intègre la plupart des fonctionnalités de SIRAL-2, l'instrument scientifique principal du satellite CryoSat-2 (qui sera lancé début 2010) et de L'altimètre Poséidon-3 embarqué sur le satellite Jason-2.
Il intègre notamment le mode « SAR – haute résolution » de SIRAL-2 ainsi que les derniers algorithmes de poursuite de terrain dits « en boucle ouverte » de Poseidon-3 ce qui lui confère une grande souplesse d’emploi et autorise une augmentation significative des zones accessibles à la mesure.
A l’image de Poseidon-3, le SRAL est bi-fréquence : il émet séquentiellement des impulsions en bande Ku et en bande C ce qui permet d’estimer le retard de propagation des ondes radiofréquences dans l’ionosphère et d’améliorer ainsi la connaissance des distances.
Son rôle est de déterminer avec une très grande précision la distance entre le satellite et la surface d’intérêt, afin de déduire la hauteur (ou la variation de hauteur) de cette dernière. A titre d’exemple, les variations locales de hauteurs des océans peuvent atteindre plusieurs mètres. La précision visée est de l’ordre du centimètre, ce qui représente une performance remarquable pour une mesure prise à partir d’une orbite à 815 km.
Sur le long terme, l’analyse de ses données (calibrées, moyennées et comparées à celles issues d’autres missions…) va aussi permettre de mettre en évidence les évolutions du niveau moyen des mers voisines du millimètre ce qui en fait un outil particulièrement bien adapté au suivi de l’impact du réchauffement climatique.
Cet instrument, fournit également d'autres types de mesures, qui sont destinées aux météorologues, comme la hauteur des vagues ou l'intensité des vents à la surface de la mer de façon à améliorer la qualité des prédictions marines et à mieux anticiper les évolutions de certains phénomènes météorologiques extrêmes comme les cyclones.
MWR
MWR (Microwave Radiometer) est un radiomètre micro-onde, sur 23,8 et 36,5 GHz, permettant de mesurer la topographie de la surface des océans avec un niveau de qualité équivalent aux données fournies par les altimètres à bord d’Envisat. La mission couvrira également une topographie des glaces et de la surface des océans aux abords des zones côtières. Ces mesures permettront en outre de mieux surveiller l’impact des changements climatiques (fonte des glaces, montée du niveau de la mer…), d’améliorer la sécurité maritime ainsi que les prévisions météorologiques par une meilleure compréhension du couplage océan/atmosphère.
Compte tenu de la largeur limitée du champ de prise de vues, l'ESA envisage déjà un satellite récurrent, Sentinelle-3B, permettant de disposer de la couverture du globe en deux jours au lieu de quatre.
La fonction du radiomètre consiste à mesurer la quantité d'eau dans l'atmosphère traversée par les échos radar de SRAL et d’apporter une correction à ces mesures.En effet, la vapeur d'eau ou l’eau en suspension dans l’atmosphère, ralentit les ondes électromagnétiques. Ce phénomène peut être interprété comme un rallongement de la distance entre le satellite et la surface et donc dégrader la précision des mesures de l’altimètre, ce qui est évité avec le MWR.
De telles corrections sont seulement possibles au-dessus de l’océan, car le bruit de fond y est stable, ce qui constitue une condition nécessaire pour la mesure du bruit émis par l’atmosphère et liée à la quantité d’eau.
A contrario, au-dessus des surfaces de glace et de terre où les mesures de MWR ne peuvent pas être employées, les corrections seront basées sur des modèles et des données météorologiques globales de l’humidité atmosphérique.
Suivre en temps réel la réalisation du satellite
L'Agence spatiale européenne (ESA) et Thales Alenia Space (TAS) mettent en place, c'est une première, un site web permettant de suivre en temps réel la réalisation de Sentinelle-3, avec des commentaires des principaux intervenants[5].
Point d'étape à fin 2009[8]
- Thales Alenia Space et l’Agence Spatiale Européenne ont finalisé le cadre contractuel de la phase C/D. Le calendrier du programme est consolidé permettant d'envisager une « revue finale d’acceptation » (le satellite sera alors déclaré prêt pour le lancement) en décembre 2012 pour un tir prévu au premier semestre 2013, en fonction notamment de la disponibilité du lanceur Vega.
- les revues de définition préliminaire des différents éléments du satellite (la plateforme, les équipements, les instruments) sont terminées, ainsi que les premières revues de définition détaillée de certains équipements du satellite. Celles des instruments auront lieu courant 2010.
Début de la réalisation de Sentinelle-3B
Dans le cadre du programme GMES (Global Monitoring for Environment and Security), un contrat est attribué à Thales Alenia Space en décembre 2009, pour un montant estimé à 270 millions d’euros, par l’Agence spatiale européenne (ESA) pour la réalisation de deux satellites complémentaires Sentinelle-1B et Sentinelle-3B. La réalisation de Sentinelle-3B sur ses sites français et italien débute en mars 2010[9].
CLS choisie pour expertiser la partie altimétrique de la mission
En avril 2010, CSL (Collecte Localisation Satellites) est choisie par Thales Alenia Space pour expertiser la partie altimétrique de la mission. CLS sera en charge de la définition et le prototypage des algorithmes de traitement des instruments associées à cette mission principalement les deux instruments micro-ondes de la charge utile topographique (SRAL et MWR)[10].
ACRI-ST choisie pour la composante optique de la mission
En avril 2010 également, ACRI-ST[11], une société de R&D basée à Sophia Antipolis est retenue pour l’expertise couleur et surface de la mission, de la définition des algorithmes de traitement de OLCI et le prototypage de tous les algorithmes de deux instruments optiques (OLCI et SLSTR)[12].
Notes et références de l'article
- Thales Alenia Space va fournir le 3ème satellite environnemental du programme GMES, Sentinelle 3 », 14 avril 2008, dans www.thalesgroup.com. «
- Christian Lardier, « Trois sentinelles pour observer la Terre », dans Air & Cosmos, N° 2121, 18 avril 2008
- en ligne. Daniel Gorelick, rédacteur pour America.gov, « Comprendre les océans »,
- Thales Alenia Space », 14 avril 2008, dans www.sophianet.com. Jean-Pierre Largillet, « Cannes : une nouvelle sentinelle à construire pour
- Suivre en temps réel la fabrication de Sentinelle-3.
- en ligne. « Entretien avec Hervé Roquet : Rôle de SLSTR dans MyOcean »,
- en ligne « Entretien avec Marc Deschaux-Beaume, chef de projet de l’altimètre SRAL chez Thales Alenia Space »,
- en ligne sur le site du programme. Rémy Decourt, « Yvan Baillion, responsable du programme pour Thales Alenia Space, fait le point sur l'état d'avancement de Sentinelle-3 », 21 janvier 2010,
- Thales Alenia Space débute la réalisation des satellites environnementaux Sentinelle 1B et 3B
- CLS pour la performance de la mission Topographie
- Site web de ACRI-ST
- ACRI-ST pour la composante optique de la mission
Voir aussi
Articles connexes
- Agence spatiale européenne
- Eumetsat
- Satellite de télédétection
- Thales Alenia Space
- Centre spatial de Cannes Mandelieu
Liens et documents externes
- (en) Agence spatiale européenne (ESA)
- (en) Observation de la Terre à l'ESA
- (en) Le projet myocean
- (fr) Suivi en temps réel de la réalisation du satellite Sentinelle-3
- Portail de l’astronautique
- Portail de l’Union européenne
- Portail des sciences de la Terre et de l’Univers
- Portail de l’information géographique
Wikimedia Foundation. 2010.