Compas parfait

Compas parfait

Le compas parfait est un outil de construction géométrique inventé par Abū Sahl al-Qūhī (en)[1], un mathématicien perse du Xe siècle. Cet objet permet de tracer les coniques, c'est-à-dire les sections d'un cône de révolution par un plan : de la droite (ou plutôt segment de droite) au cercle, en passant par l'hyperbole, la parabole et l'ellipse ; il n'a cependant été trouvé aucun vestige archéologique correspondant à sa description.

Gravure originale du compas parfait par Abū Sahl al-Qūhī.

Le compas parfait ressemble au compas « classique »: il comporte deux branches A et B faisant un angle constant β entre elles. La branche A, fixée au support, s'identifie à l'axe du cône et la branche B balaie la surface de révolution du cône autour de son axe. Le compas parfait a ainsi deux contraintes supplémentaires: l'angle α entre le support et la branche A est constant et la branche B, décrivant la figure géométrique, est télescopique. Chacun des angles α et β a une valeur inférieure ou égale à 90° et la nature des coniques dépendra des valeurs relatives entre ces angles. Les figures se dessinent donc en faisant tourner le compas parfait autour de la branche A, soit autour de l'axe du cône, ce qui fait décrire à l'extrémité de la branche B:

Il est évident que si α=β=90°, le compas parfait ne pourrait pas dessiner de figure.

Note et référence

  1. Philppe Abgrall, Le développement de la géométrie aux IXe–XIe siècles : Abū Sahl al-Qūhī, Blanchard, 2004 (ISBN 9782853672214) 

Lien externe

D. Raynaud, Le tracé continu des coniques à la Renaissance, publié dans Arabic Sciences and Philosophy 17 (2007), 299-346.

Al-Sijzi et le compas parfait


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Compas parfait de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Nombre constructible à la règle et au compas — Nombre constructible Un nombre constructible à la règle et au compas est la mesure d une longueur associée à deux points constructibles à la règle et au compas. Ainsi, est un nombre constructible, mais ni ni π ne le sont. C est du moins ainsi que …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Histoire De La Géométrie — Détail d une enluminure du XIVe siècle, contrepoinçon d une lettre capitale P, au début des Éléments d Euclide, dans une traduction attribuée à Adélar de Bath. Une femme porte une équerre d une main et utilise un compas de l autre pour mesurer… …   Wikipédia en Français

  • Histoire de la geometrie — Histoire de la géométrie Détail d une enluminure du XIVe siècle, contrepoinçon d une lettre capitale P, au début des Éléments d Euclide, dans une traduction attribuée à Adélar de Bath. Une femme porte une équerre d une main et utilise un compas… …   Wikipédia en Français

  • Conique — En mathématiques, et plus précisément en géométrie, les coniques constituent une famille très utilisée de courbes planes algébriques, qui peuvent être définies de plusieurs manières différentes, toutes équivalentes entre elles. Sommaire 1… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Racine carrée de deux — La racine carrée de deux, notée √2, √2 ou 21/2, est définie comme le seul nombre réel positif qui, lorsqu’il est multiplié par lui même, donne le nombre 2, autrement dit √2 × √2 = 2. C’est un nombre irrationnel, dont une valeur approchée à 10 9… …   Wikipédia en Français

  • Constante de Pythagore — Racine carrée de deux L hypoténuse d un triangle rectangle isocèle de côté 1 vaut √2 La racine carrée de deux, notée √2, √2 ou 21/2, est définie comme le seul nombre réel positif qui, lorsqu il est multiplié p …   Wikipédia en Français

  • Racine Carrée De 2 — Racine carrée de deux L hypoténuse d un triangle rectangle isocèle de côté 1 vaut √2 La racine carrée de deux, notée √2, √2 ou 21/2, est définie comme le seul nombre réel positif qui, lorsqu il est multiplié p …   Wikipédia en Français

  • Racine Carrée De Deux — L hypoténuse d un triangle rectangle isocèle de côté 1 vaut √2 La racine carrée de deux, notée √2, √2 ou 21/2, est définie comme le seul nombre réel positif qui, lorsqu il est multiplié p …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”