Quadrature du carré

Quadrature du carré

Un carré dont les côtés sont égaux à une unité de longueur multipliée par un nombre entier est appelé un carré entier. Le problème de la quadrature du carré consiste à paver un carré donné avec de tels carrés.

La quadrature du carré est une tâche triviale sans conditions supplémentaires fixées. La restriction la plus étudiée est la quadrature « parfaite » du carré, où tous les carrés contenus sont de tailles différentes (voir ci-dessous).

D'autres conditions peuvent conduire à des résultats intéressants. L'une d'elle est la quadrature du carré sans jonction de bord (c’est-à-dire la jonction complète de bords de même taille n'est pas autorisée) et la quadrature du carré sans contact (c’est-à-dire l'interdiction à deux pièces de même taille de se toucher) (voir pavage).

Sommaire

Quadrature parfaite du carré

Une quadrature « parfaite » du carré est telle qu'un carré est constitué de carrés plus petits chacun de taille différente. Le nom fut attribué par analogie humoristique avec la quadrature du cercle.

Il a été enregistré en premier qu'elle a été étudiée par R. L. Brooks, C. A. B. Smith, A. H. Stone, et W. T. Tutte, à l'université de Cambridge.

Pour ce faire, ils ont transformé le pavage du carré en un circuit électrique équivalent, en considérant les carrés comme des résistors qui étaient connectés à leurs voisins à leur limite supérieure et inférieure, puis ils appliquèrent les lois de Kirchhoff concernant les circuits électriques et les techniques de décomposition de circuit à ce circuit.

La première quadrature parfaite du carré fut trouvée par Roland Sprague en 1939.

Si nous prenons une pièce du pavage et que nous l'élargissons jusqu'à ce que le plus petit carré ait maintenant la taille du carré S dont nous sommes partis, alors nous pouvons voir que nous obtenons à partir de ceci un pavage du plan avec des carrés entiers, chacun ayant une taille différente.

C'est encore un problème non-résolu que de savoir si le plan peut être pavé avec un ensemble de carrés entiers tels que chacun d'eux ait une taille différente utilisant un nombre naturel et utilisé une seule fois.

Martin Gardner a écrit un long article à propos de l'histoire de la quadrature du carré.

La quadrature parfaite du carré du plus petit ordre

Quadrature simple du carré

Une quadrature « simple » du carré est celle dont aucun sous-ensemble de carrés ne forme un rectangle. La plus petite quadrature parfaite simple du carré fut découverte par A. J. W. Duijvestin en utilisant une recherche par ordinateur. Son pavage utilise 21 carrés, et a été démontré comme étant minimal.

Le quilt de Mrs. Perkins

Lorsque la contrainte que tous les carrés soient de tailles différentes est levée, le problème de la quadrature du carré résultant est souvent appelé le problème du « quilt de Mrs. Perkins ».

Lectures

  • Brooks, R. L.; Smith, C. A. B.; Stone, A. H.; and Tutte, W. T. The Dissection of Rectangles into Squares, Duke Math. J. 7, 312-340, 1940
  • Martin Gardner, « Squaring the square, » in The 2nd Scientific American Book of Mathematical Puzzles and Diversions.
  • C. J. Bouwkamp and A. J. W. Duijvestijn, Catalogue of Simple Perfect Squared Squares of Orders 21 Through 25, Eindhoven Univ. Technology, Dept. of Math., Report 92-WSK-03, Nov. 1992.
  • C.J.Bouwkamp and A.J.W.Duijvestijn, Album of Simple Perfect Squared Squares of order 26, Eindhoven University of Technology, Faculty of Mathematics and Computing Science, EUT Report 94-WSK-02, December 1994.

Voir aussi

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Quadrature du carré de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Quadrature du carre — Quadrature du carré Un carré dont les cotés sont égaux à une unité de longueur multipliée par un nombre entier est appelé un carré entier. Le problème de la quadrature du carré consiste à paver un carré donné avec de tels carrés. La quadrature du …   Wikipédia en Français

  • Quadrature (mathematiques) — Quadrature (mathématiques) Pour les articles homonymes, voir Quadrature. En mathématiques, la quadrature d une surface est la recherche d un carré ayant même aire que la surface en question. Si dans le langage courant le terme de quadrature revêt …   Wikipédia en Français

  • Quadrature (mathématiques) — Pour les articles homonymes, voir Quadrature. En mathématiques, la quadrature d une surface est la recherche d un carré ayant même aire que la surface en question. Si dans le langage courant le terme de quadrature revêt le sens d opération… …   Wikipédia en Français

  • quadrature — [ k(w)adratyr ] n. f. • 1407; bas lat. quadratura 1 ♦ Géom. Opération qui consiste à construire un carré équivalant à une aire donnée. Cour. La quadrature [ kadratyr ] du cercle : faux problème que les géomètres anciens tentaient de résoudre. Fig …   Encyclopédie Universelle

  • Carre (mathematiques elementaires) — Carré Pour les articles homonymes, voir Carré (homonymie). Un carré. Un carré est un polygone régulier à quatre côtés. Cela signifie que ses quatre …   Wikipédia en Français

  • Carré (Mathématiques Élémentaires) — Carré Pour les articles homonymes, voir Carré (homonymie). Un carré. Un carré est un polygone régulier à quatre côtés. Cela signifie que ses quatre …   Wikipédia en Français

  • Carré (géométrie) — Carré Pour les articles homonymes, voir Carré (homonymie). Un carré. Un carré est un polygone régulier à quatre côtés. Cela signifie que ses quatre …   Wikipédia en Français

  • Carré (mathématiques élémentaires) — Carré Pour les articles homonymes, voir Carré (homonymie). Un carré. Un carré est un polygone régulier à quatre côtés. Cela signifie que ses quatre …   Wikipédia en Français

  • Quadrature du cercle — ● Quadrature du cercle détermination du côté d un carré ayant même aire que celle de l intérieur d un cercle de rayon donné, et qui est impossible avec le seul usage d une règle et d un compas ; se dit de tout problème insoluble …   Encyclopédie Universelle

  • Quadrature du cercle — L approximation mentionnée dans le papyrus Rhind La quadrature du cercle est un problème classique de mathématiques apparaissant en géométrie. Il fait partie des trois grands problèmes de l Antiquité, avec la trisection de l angle et la… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”