Produit croisé

Produit croisé

Règle de trois

Icone math élém.jpg
Cet article fait partie de la série
Mathématiques élémentaires
Algèbre
Logique
Arithmétique
Probabilités
Statistiques

La règle de trois permet de résoudre de nombreux problèmes concernant des phénomènes proportionnels. Elle repose sur le fait que, dans un tableau de proportionnalité, les produits en croix sont égaux. Si

a b
c d

est un tableau de proportionnalité, alors a×d = b×c.

Sommaire

Explication

Le principe de la règle de trois consiste à se ramener à l'unité.

Prenons un exemple :

La question que nous souhaitons résoudre est :

Si pour fabriquer 5 objets il faut 7 heures de travail, combien d'heures faut-il pour fabriquer 8 objets ?
  • Déterminons le temps nécessaire à la production d'un objet :

En 7 heures, sont fabriqués 5 objets. Donc la fabrication d'1 objet dure \dfrac 75 heures de travail (5 fois moins de temps).

  • Nous pouvons donc en déduire le temps nécessaire à la production de 8 objets :

Si pour 1 objet il faut \dfrac 75 heures, alors pour 8 objets il faut 8 fois plus de temps soit \dfrac 75\times 8 heures de travail.

Le terme de Règle de trois provient du fait qu'elle fait intervenir 3 nombres (ici 5, 7, 8). La mise en place d'une règle de trois nécessite une rédaction rigoureuse pour placer ces trois nombres dans la fraction finale. Cette rédaction peut être avantageusement remplacée par un tableau de proportionnalité. De plus, l'utilisation d'un tel tableau permet d'utiliser l'égalité du produit en croix (égalité du produit des diagonales).

Soit x le temps de fabrication de 8 objets :

nb objets 5 1 8
temps (en h) 7 \dfrac 75 x = \dfrac{7 \times8}{5}

Ici, on passe de la seconde colonne à la troisième colonne en divisant par 5, puis de la troisième colonne à la dernière colonne en multipliant par 8. Après avoir converti en minutes pour effectuer les calculs, on obtiendra le nombre manquant qui est donc: x = 11h12min.

Le tableau de proportionnalité permet de raccourcir encore le raisonnement en mécanisant le calcul. On peut trouver directement le résultat de cette façon :

5 8
7 x = \dfrac{7 \times8}{5}

Le résultat final s'obtient en effectuant le produit des deux termes d'une diagonale et en divisant par le terme restant.

x = \dfrac{7\times 8}{5}.

C'est sous cette forme qu'elle est maintenant présentée en France.

Exemples

Exemple 1

Le prix des pommes est de 5 € le kg, j'en achète 1,5 kg, combien devrai-je payer ?

Kg Prix en €
1 5
1,5 x

x = \dfrac{1,5\times 5}{1} = 7,5

Donc, je devrai payer 7,5 €.

Exemple 2

On dispose d'un plan dont l'échelle indique que : 2 cm \hat = 15 km.
On veut connaître la distance à vol d'oiseau entre 2 villes.
Pour cela, on mesure sur le plan la distance entre les points indiquant le lieu géographique de ces villes. On trouve 12,2 cm.

Plan 2 12,2
Terrain 15  ?

D'après la règle de trois, on effectue ce petit calcul :

x = \dfrac{12,2\times 15}{2} = 91,5

Ainsi la distance sur le terrain est : 91,5 km.

Extensions

Règle de trois inverse

Il y a des grandeurs qui diminuent à proportion d'un accroissement des données. Par exemple, si on demande en combien de temps 10 ouvriers construiront un certain mur que 15 ouvriers ont pu élever en 12 jours, on considèrera qu'il faut, pour construire un tel mur, un travail égal à

W = 15 \times 12 = 180 hommes×jours ;

travail qui est, dans une large mesure, indépendant du nombre d'hommes ou du temps disponible, mais ne dépend que de la taille du mur[1]. Ainsi, le temps recherché t doit être tel que : W = 10 \times t = 180 donc t = 18 jours. En résumé, la règle de trois s'écrit dans ce cas :  t = \dfrac{15 \times 12 }{10} = 18

Règle de trois composée

On rencontre parfois des problèmes de proportion faisant intervenir deux « règles de trois » enchaînées, ou même plus. En voici un exemple :

18 ouvriers travaillant à raison de 8 heures par jour ont pavé en 10 jours une rue longue de 150 m. On demande combien il faut d'ouvriers travaillant 6 heures par jour pour paver en 15 jours une rue longue de 75 m, rue de même largeur que la précédente.

Lagrange propose la règle suivante[2] : Si une quantité augmente en même temps, dans la proportion qu'une ou plusieurs autres quantités augmentent, et que d'autres quantités diminuent, c'est la même chose que si on disait que la quantité proposée augmente comme le produit des quantités qui augmentent en même temps, divisé par le produit de celles qui diminuent en même temps.

Dans l'exemple qu'on vient de donner, pour une même largeur de route,

  • il faut plus d'ouvriers si la longueur de rue à paver augmente ;
  • il faut moins d'ouvriers si la durée journalière de travail augmente ou si le nombre de jours accordé pour faire le travail augmente.

Donc le nombre N d'ouvriers cherché est donné par : N = 18 \times \dfrac{75}{150}\div \left(\dfrac{6}{8} \times \dfrac{15}{10} \right)=\dfrac{18 \times 8 \times 10 \times 75 }{6 \times 15 \times 150}

Notes et références

  1. Cette hypothèse ne va pas de soi : il faut en général un nombre d'ouvriers minimum et un temps d'amorçage minimum, incompressible, pour exécuter une tâche ; et puis si un travail d'exécution (ici, construire un mur) peut à la rigueur être indéfiniment partagé entre un nombre arbitraire de travailleurs, il n'en va pas de même d'un travail de conception ou d'expertise ; enfin, l'augmentation indéfinie de l'effectif peut s'avérer dommageable, les ouvriers se gênant entre eux à un certain stade de la construction...
  2. Lagrange - « Leçons de mathématiques données à l'Ecole Normale de l'an III » (1992), éd. Dunod, p. 217.
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « R%C3%A8gle de trois ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Produit croisé de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • croisé — croisé, ée [ krwaze ] adj. et n. m. • 1559 « garni de croix »; de croiser I ♦ Adj. 1 ♦ Disposé en croix; qui se croisent. Bretelles croisées dans le dos. Les jambes croisées. Rester les bras croisés; fig. rester à ne rien faire. ♢ Tissu croisé,… …   Encyclopédie Universelle

  • Rupture du ligament croisé — Traduction à relire Kreuzbandriss → …   Wikipédia en Français

  • Compilateur croisé — Compilateur Pour les articles homonymes, voir Compilation. Un compilateur est un programme informatique qui traduit un langage, le langage source, en un autre, appelé le langage cible, en préservant la signification du texte source. Ce schéma… …   Wikipédia en Français

  • Réaction de couplage croisé — Réaction de couplage Une réaction de couplage ou couplage oxydatif en chimie organique est un nom générique pour une catégorie de réactions en chimie organométallique dans laquelle deux radicaux hydrocarbures sont couplés avec l aide d un… …   Wikipédia en Français

  • Interactions logiques — La notion mathématique d’« interaction logique », conçue comme généralisation de celle d’« interaction », issue du plan d expérience, a été introduite à la fin des années 1990. D’abord utilisée en analyse des données… …   Wikipédia en Français

  • Modèle de régression multiple postulés et non postulés — Modèles de régression multiple postulés et non postulés Sommaire 1 Modèle 2 Régression multiple 3 Modèle postulé 4 Le problème de la sélection des variables explicatives …   Wikipédia en Français

  • Modèles de régression multiple postulés et non postulés — Sommaire 1 Modèle 2 Régression multiple 3 Modèle postulé 4 Le problème de la sélection des variables explicatives …   Wikipédia en Français

  • Emmy Noether — Portrait de Emmy Noether avant 1910. Naissance 23 mars 1882 Erlangen (Bavière, Allemagne) Décès 14 avril  …   Wikipédia en Français

  • Noether — Emmy Noether Emmy Noether Amalie Emmy Noether (23 mars 1882 14 avril 1935) était une mathématicienne allemande connue pour ses contributions révolutionnaires en algèbre abstraite et physique théorique. Décrite par Albert Einstein et d autres… …   Wikipédia en Français

  • Analyse Discriminante Linéaire — L’analyse discriminante linéaire fait partie des techniques d’analyse discriminante prédictive. Il s’agit d’expliquer et de prédire l’appartenance d’un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l’aide… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”