Ornstein-Uhlenbeck

Ornstein-Uhlenbeck

Modèle OUV

Finance

Modèle OUV (Ornstein, Uhlenbeck, Vasicek) est utilisé pour calculer les options sur taux.

Mathématique

Nommé après Leonard Salomon Ornstein et George Eugene Uhlenbeck et qui est aussi connu sous le nom de mean-reverting process, le processus r est un processus d'Ornstein-Uhlenbeck (OU), si son équation différentielle stochastique (EDS) est de la forme:

dr_t = -\theta (r_t-\mu)\,dt + \sigma\, dW_t,\,

où θ, μ et σ sont des paramètres déterministes et Wt suivant la loi de Wiener.

Trois exemples du processus d'OU avec θ=1, μ=1.2, σ=0.3:
Bleu: Valeur initiale a=0 (a.s.)
Vert: Valeur initiale a=2 (a.s.)
Rouge: Valeur initiale distributée normalement ainsi le procédé à une mesure invariante

Solution

Cette équation est résolue par variation de paramètres. Appliquons le lemme d'Itō à la fonction f(rt,t) = rteθt pour obtenir

df(r_t,t) =  \theta r_t e^{\theta t}\, dt + e^{\theta t}\, dr_t\,
 = e^{\theta t}\theta \mu \, dt + \sigma e^{\theta t}\, dW_t. \,

En intégrant de 0 à t, on obtient

 r_t e^{\theta t} = r_0 + \int_0^t e^{\theta s}\theta \mu \, ds + \int_0^t \sigma e^{\theta s}\, dW_s \,

d'où nous voyons

 r_t  = r_0 e^{-\theta t} + \mu(1-e^{-\theta t}) + \int_0^t \sigma e^{\theta (s-t)}\, dW_s. \,

Ainsi, le premier moment (mathématique) est donné par (en supposant que r0 est une constante),

E(rt) = r0e − θt + μ(1 − e − θt).

s \wedge t = \min(s,t) On peut utiliser l'isométrie d'Itō pour calculer la covariance

\operatorname{cov}(r_s,r_t)= E[(r_s - E[r_s])(r_t - E[r_t])]
= E[\int_0^s \sigma  e^{\theta (u-s)}\, dW_u \int_0^t \sigma  e^{\theta (v-t)}\, dW_v ]
= \sigma^2 e^{-\theta (s+t)}E[\int_0^s  e^{\theta u}\, dW_u \int_0^t  e^{\theta v}\, dW_v ]
= \frac{\sigma^2}{2\theta} \, e^{-\theta (s+t)}(e^{2\theta (s \wedge t)}-1).\,

C'est aussi possible (et souvent commode) de représenter rt (sans réserve) en tant que mesure transformée du temps du processus Wiener :

 r_t=\mu+{\sigma\over\sqrt{2\theta}}W(e^{2\theta t})e^{-\theta t}

ou condition (donné r0) comme

 r_t=r_0 e^{-\theta t} +\mu (1-e^{-\theta t})+
{\sigma\over\sqrt{2\theta}}W(e^{2\theta t}-1)e^{-\theta t}.

Le processus d'Ornstein-Uhlenbeck (un exemple de processus Gaussien à variance liée) admet un procédé stationnaire à distribution probable, en opposition au processus de Wiener.


L'intégrale Temps du procédé peut être utilisée pour générer du bruit avec a 1/f pouvoir spectrum.

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Mod%C3%A8le OUV ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Ornstein-Uhlenbeck de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Ornstein–Uhlenbeck — Ornstein Uhlenbeck may refer to: Ornstein–Uhlenbeck operator Ornstein–Uhlenbeck process This disambiguation page lists articles associated with the same title. If an internal link led you here, you may …   Wikipedia

  • Ornstein–Uhlenbeck process — Not to be confused with Ornstein–Uhlenbeck operator. In mathematics, the Ornstein–Uhlenbeck process (named after Leonard Ornstein and George Eugene Uhlenbeck), is a stochastic process that, roughly speaking, describes the velocity of a massive… …   Wikipedia

  • Ornstein–Uhlenbeck operator — Not to be confused with Ornstein–Uhlenbeck process. In mathematics, the Ornstein–Uhlenbeck operator can be thought of as a generalization of the Laplace operator to an infinite dimensional setting. The Ornstein–Uhlenbeck operator plays a… …   Wikipedia

  • Ornstein-Uhlenbeck-Prozess — Drei Pfade von unterschiedlichen Ornstein Uhlenbeck Prozessen mit σ=0.3, θ=1, μ=1.2: navy: Startwert a=0 (f. s.) olivgrün: Startwert a=2 (f. s.) rot: Startwert gezogen aus der stationären Verteilung des Prozesses. Der Ornstein Uhlenbeck …   Deutsch Wikipedia

  • Processus d'Ornstein-Uhlenbeck — En mathématiques, le processus d Ornstein Uhlenbeck, nommé après Leonard Ornstein (en) et George Uhlenbeck et aussi connu sous le nom de mean reverting process, est un processus stochastique décrit par l équation différentielle stochastique… …   Wikipédia en Français

  • Modèle OUV (Ornstein, Uhlenbeck, Vasicek) — Modèle OUV Finance Modèle OUV (Ornstein, Uhlenbeck, Vasicek) est utilisé pour calculer les options sur taux. Mathématique Nommé après Leonard Salomon Ornstein et George Eugene Uhlenbeck et qui est aussi connu sous le nom de mean reverting process …   Wikipédia en Français

  • Ornstein — may refer to: Donald Samuel Ornstein Jonathan G. Ornstein Leo Ornstein Leonard Salomon Ornstein, known for the Ornstein–Zernike equation and the Ornstein–Uhlenbeck process Michael Marisi Ornstein Norman J. Ornstein Robert Ornstein Severo Ornstein …   Wikipedia

  • Ornstein — ist der Familienname folgender Personen: Donald Samuel Ornstein, US amerikanischer Mathematiker Leo Ornstein, russisch amerikanischer Komponist Leonard Ornstein, niederländischer Physiker (siehe auch: Ornstein Uhlenbeck Prozess) Richard W.… …   Deutsch Wikipedia

  • George Uhlenbeck — Uhlenbeck (links), Kramers und Goudsmit George Eugene Uhlenbeck (* 6. Dezember 1900 in Batavia (heute: Jakarta), Indonesien; † 31. Oktober 1988 in Boulder, Colorado …   Deutsch Wikipedia

  • George Eugene Uhlenbeck — Uhlenbeck (links), Kramers und Goudsmit George Eugene Uhlenbeck (* 6. Dezember 1900 in Batavia (heute: Jakarta), Indonesien; † 31. Oktober 1988 in Boulder, Colorado, USA) war ein US ame …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”