Orbitale de type gaussien

Orbitale de type gaussien

En chimie numérique, les orbitales de type gaussien (connues aussi comme orbitales gaussiennes ou gaussiennes, en anglais Gaussian orbitals - GTO) sont des fonctions utilisées comme orbitales atomiques dans les méthodes LCAO pour le calcul des orbitales électroniques dans les molécules ou les solides.

Sommaire

Utilisation

La raison principale d'utilisation d'une base de fonctions gaussiennes pour des calculs de chimie numérique est le théorème de produit gaussien, qui assure que le produit de deux fonctions gaussiennes centrées sur deux atomes différents est une somme finie de gaussiennes centrées sur un point sur l'axe qui les connecte. De cette façon, les intégrales à quatre centres peuvent être réduites en sommes finies d'intégrales à deux centres, puis après une étape supplémentaire, en sommes finies d'intégrales à un centre. Une accélération de l'ordre de 4 à 5 ordres de grandeurs comparée aux orbitales de Slater est produite en dépit du surcoût qu'entraîne le plus grand nombre de fonctions de base généralement requis pour un calcul gaussien.
Pour des raisons de convenance, de nombreux programmes d'évaluation des intégrales gaussiennes marchent dans une base de gaussiennes cartésiennes, même si des gaussiennes sphériques sont nécessaires : les « contaminants » sont supprimés a posteriori.
Les orbitales atomiques sont de la forme :

\ R(r) = A r^l e^{-\alpha r}

Les GTO sont de la forme :

\ R(r) = A r^l e^{-\alpha r^2}

Intégrales moléculaires

Les intégrales moléculaires sur les fonctions gaussiennes cartésiennes furent d'abord proposées par Boys[1] en 1950. Depuis lors, de nombreux travaux ont été effectués afin d'accélérer l'évaluation de ces intégrales qui sont la partie la plus lente (limitante) de nombreux calculs en chimie quantique. McMurchie et Davidson (1978) ont introduit des fonctions gaussiennes hermitiennes afin d'utiliser l'avantage des relations différentielles. Pople et Hehre (1978) ont développé une méthode de coordonnées locales. Obara et Saika ont introduit des relations de récurrence efficaces en 1985, ce qui fut suivi par le développement d'autres relations de récurrence importantes. Gill et Pople (1990) ont introduit un algorithme « prisme » qui permet l'utilisation efficace de 20 chemins de calcul différents.

Notes et références

  1. S.F. Boys, Proc. R. Soc. London Ser. À 200, 542 (1950)

Liens externes



Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Orbitale de type gaussien de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Orbitale gaussienne — Orbitale de type gaussien En chimie numérique, les orbitales de type gaussien (connues aussi comme orbitales gaussiennes ou gaussiennes, en anglais Gaussian orbitals GTO) sont des fonctions utilisées comme orbitales atomiques dans les méthodes… …   Wikipédia en Français

  • Base (Chimie Quantique) — Pour les articles homonymes, voir Base. Une base en chimie quantique est un ensemble de fonctions utilisées afin de créer des orbitales moléculaires, qui sont développées comme combinaisons linéaires de telles fonctions avec des poids ou… …   Wikipédia en Français

  • Base (chimie quantique) — Pour les articles homonymes, voir Base. Une base en chimie quantique est un ensemble de fonctions utilisées afin de modéliser des orbitales moléculaires, qui sont développées comme combinaisons linéaires de telles fonctions avec des poids ou… …   Wikipédia en Français

  • Base STO-nG — Une base STO nG est une base utilisée en chimie numérique, c est à dire un ensemble de fonctions utilisées afin de créer des orbitales moléculaires. Il s agit d une base minimale pour laquelle n orbitales gaussiennes primitives sont ajustées à… …   Wikipédia en Français

  • Iconographie des corrélations — En analyse des données, l iconographie des corrélations[1] est une méthode qui consiste à remplacer une matrice de corrélation par un schéma où les corrélations « remarquables » sont représentées par un trait plein (corrélation… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”