Microscope confocal

Microscope confocal
Page d'aide sur l'homonymie Pour les articles homonymes, voir Microscope (homonymie) et Microscopie.
Schéma de principe du microscope confocal par Marvin Minsky en 1957

Un microscope confocal est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ 400 nm) appelées « sections optiques ». En positionnant le plan focal de lobjectif à différents niveaux de profondeur dans léchantillon, il est possible de réaliser des séries dimages à partir desquelles on peut obtenir une représentation tridimensionnelle de lobjet. L'objet n'est donc pas directement observé par l'utilisateur ; celui-ci voit une image recomposée par ordinateur.

Le microscope confocal fonctionne en lumière réfléchie ou en fluorescence. La plupart du temps, on utilise un laser comme source de lumière. On parle alors de microscope confocal à balayage laserMCBL (en anglais CLSM pour confocal laser scanning microscope).

Le principe du microscope confocal a été décrit par Marvin Minsky en 1953[1], mais ce nest que dans la fin des années 1980 que des modèles commerciaux sont apparus, rendant cette technique accessible à de nombreux laboratoires. La microscopie confocale est très utilisée aujourd'hui en biologie ainsi quen sciences des matériaux.

Sommaire

Principe et avantages

Limite du microscope optique classique

En microscopie optique à champ large, pour qu'une image soit nette, il faut que l'objet soit dans le plan focal du système optique. Lorsqu'un objet est épais, présente un relief important, ou bien lorsqu'il est incliné par rapport à l'objectif, seule une partie de l'objet est nette dans limage (voir l'article sur la profondeur de champ).

De plus, plus le grossissement est élevé, plus cette profondeur est faible, ce qui empêche d'avoir une image nette sur la totalité d'un objet un peu étendu. Ceci est particulièrement ennuyeux pour les objets allongés comme les nerfs ; ils sont donc flous sur une partie de leur trajet quelle que soit l'habilité du préparateur.

En fait, la microscopie à champ large pose un problème pour tous les objets ayant une certaine épaisseur. En effet, la lumière émise par le plan focal, donc nette, est perdue dans la fluorescence émise par les plans adjacents au plan focal, qui par définition sont flous.

Principe du microscope confocal

Pour résoudre ce problème, on éclaire la surface non plus par un faisceau de lumière blanche (lampe 10), mais par un faisceau laser, concentré par une lentille (identique avec l'objectif 11 dans le cas du schéma ci-dessus), qui balaie la surface en positionnant un sténopé (pinhole en anglais) devant le détecteur (28), dans un plan focal conjugué au plan focal de lobjectif (plans confocaux). De cette manière, seuls les photons provenant du plan focal passent le sténopé et participent à la formation de limage, d' le nom « confocal » (synonyme de monofocal).

La lumière provenant des plans adjacents (floue) est arrêtée par les bords du trou. Il est ainsi possible d'obtenir une coupe optique nette correspondant uniquement au plan focal. En faisant varier ce plan on obtient une succession de coupes donnant des informations nettes et précises dans les trois dimensions de l'objet observé.

La microscopie confocale permet des études sur du matériel fixé, mais permet également d'étudier des phénomènes dynamiques, sur des cellules ou des tissus vivants, en particulier grâce aux molécules de la famille GFP (Green Fluorescent Protein). Par ailleurs les évolutions permanentes de la technique permettent aujourd'hui de se pencher sur des processus d'interaction moléculaire (Technique du FRET), ou de dynamique moléculaire (FRAP, FLIP).

Résolution

Exemple d'application.

La résolution dun microscope confocal peut être déterminée expérimentalement[2] ou théoriquement (par exemple avec PSF Lab) à laide de la fonction d'étalement du point (Point Spread Function ou PSF en anglais). En microscopie optique conventionnelle léchantillon est illuminé en champ large et imagé par lobjectif de microscope en sorte que la PSF du système entier est donnée uniquement par la PSF de détection de lobjectif de microscope utilisé. En microscopie confocale, par contre, la lumière (souvent dune source lumineuse cohérente comme un laser) est focalisée sur léchantillon et dans ce cas la PSF totale est donc le produit de la PSF dillumination et de la détection[3]. Ceci mène à une résolution latérale légèrement meilleure (180-160 nm) à celle attendue pour un microscope optique conventionnel (200 nm). La résolution en Z (profondeur) est de lordre de 600 nm en microscopie confocale.

Description du dispositif

Source de lumière

La plupart du temps, la source d'excitation utilisée n'est plus une lampe à arc, mais un (ou plusieurs) faisceau(x) laser. L'intérêt des lasers est de fournir une lumière monochromatique plus spécifique et facile à contrôler (en termes de filtrage). De plus la finesse du pinceau laser permet d'améliorer considérablement la résolution en XY (dans le plan) du fait d'une moindre diffusion.

Les lasers utilisés le plus fréquemment sont les suivants :

Si l'on utilise une source de lumière blanche à la place d'un laser, il est également possible d'obtenir des images en couleur avec un microscope confocal. Il est toutefois plus difficile de focaliser la lumière blanche avec une forte intensité sur l'objet, ce qui augmente le temps d'acquisition. Les microscopes confocaux en lumière blanche utilisent en général plusieurs rayons de manière simultanée, ce qui permet d'observer plusieurs endroits de l'échantillon à la fois. Grâce à des dispositifs comme un disque de Nipkov, il est possible de réaliser des images en temps réel.

Système de balayage

Le balayage du champ observé par le laser se fait à laide de deux miroirs orthogonaux. Il s'agit de miroirs galvanométriques très rapides (entre 200 Hz et 2 KHz selon les modèles) effectuant le balayage en X, suivi d'un miroir permettant le balayage en Y.

Le positionnement de limage dans la profondeur de léchantillon est généralement obtenu en déplaçant en Z lobjectif à laide dun quartz piezoélectrique par pas successifs de 200-300 nm.

Détecteurs

Les détecteurs utilisés sont des tubes photo-multiplicateurs (PMT) ou une caméra CCD haute sensibilité. Lintensité lumineuse est mesurée et numérisée en fonction de la position du laser dans léchantillon : on obtient directement des images numériques.

L'utilisation de photo-multiplicateurs (PMT) comme capteurs, à la place de l'œil ou de l'appareil photo, est rendue nécessaire par le très faible signal émis pour chaque position du faisceau. Pour chacune de ces positions, le PMT va produire un signal électrique proportionnel au niveau de lumière collecté. Ce signal électrique est ensuite numérisé pour constituer une matrice de pixels. En travaillant en 8 bits on obtient ainsi une image en 256 niveaux de gris, qui sont ensuite "colorés" artificiellement afin de différencier dans une superposition les fluorescences émises par plusieurs fluorochromes. Les images obtenues ont un champ variant de 64 x 64 à 2 048 x 2 048. Plus la résolution est élevée, plus le temps d'acquisition est long, ce qui peut devenir une limite pour l'acquisition de phénomènes biologiques rapides sur du matériel vivant. Enfin, le fichier généré est plus volumineux (problème de stockage mémoire).

Traitement de l'image

Le résultat d'une observation en microscopie confocale peut être considéré comme une tomographie à l'échelle cellulaire. Une fois la tomographie obtenue, elle peut être traitée de différentes façons :

  • en réunissant les différentes images, on reconstitue une vue en deux dimensions de l'ensemble de la préparation parfaitement nette en tout point ;
  • en créant une image stéréoscopique donnant une vue en trois dimensions de la préparation ;
  • comme tous les éléments d'une même image se trouvent à la même profondeur de la préparation, on peut déterminer les connexions entre les différents éléments observables.

Ces usages ne sont toutefois pas limitatifs et dépendent des besoins et de l'imagination des scientifiques.

Autres techniques apparentées

Microscope confocal à Disque Rotatif (ou Disque de Nipkov)

Ce type de microscope à Disque de Nipkov est utilisé principalement en lumière blanche, la scrutation en simultanée de plusieurs endroits est intéressante du fait de la durée nécessaire à l'observation de chaque point.

L'avantage de la lumière blanche réside dans l'obtention d'images en couleur.

Microscope confocal spectral (ou chromatique)

Système CHROMATIC

La microcopie confocale chromatique repose sur le même principe que la microscopie confocale classique on utilise une optique volontairement chromatique. L'appareil peut être vu schématiquement comme un empilement de microscopes confocaux classiques, un par longueur donde (autrement dit par couleur). Une analyse spectrale de la lumière repassant par diaphragme (ou filtre spatial) permet alors de connaître la position de lobjet dans létendue de mesure du capteur.

Elle permet de mesurer la rugosité dun échantillon, de faire une acquisition de profil, de topographie et, si le matériau est transparent, den mesurer lépaisseur avec une précision de quelques microns.

Les principaux domaines dapplication sont la mesure dépaisseur de verre, la micro-électronique pour la mesure dépaisseur de wafer ou la mesure de hauteur des protubérances (bumps).

Résolution

La microscopie confocale chromatique permet deffectuer des mesures avec une résolution axiale de quelques nanomètres et une résolution latérale inférieure au micron. Les étendues de mesures accessibles par cette technique vont de quelques dizaines de microns à quelques dizaines de millimètres.

Lacceptance angulaire des microscopes confocaux est équivalente à celle des microscopes classiques et peut aller jusquà 45° sur des matériaux réfléchissants (comme un miroir) et 85° sur des matériaux diffusants (comme du plâtre).

Le principe de mesure permet de ne pas avoir deffet dombre.

Généralement la microscopie confocale chromatique offre une flexibilité de mesure telle quelle peut être adaptée à tout type de mesure nécessitant une forte résolution pour une étendue de mesure de quelques dizaines de millimètres.

Périmètre

Contrairement à ce que beaucoup pensent, la microscopie confocale ne doit pas être mise en opposition avec dautres techniques de mesure comme linterférométrie lumière blanche ou linterférométrie faible cohérence mais doit être utilisée de façon complémentaire.

Les principaux avantages de la microscopie confocale sont sa souplesse dans la configuration de la mesure, sa précision et sa rapidité. Elle sera très bien adaptée pour faire une mesure de profil de grande dimension (plusieurs centaines de millimètres) ou de topographie (quelques millimètres carrés à quelques dizaines de millimètres carrés).

Elle cédera le pas à linterférométrie lumière blanche pour des champs dobservation de quelques centaines de microns, lorsque lacquisition de limage doit être faite très rapidement. Dans ces configurations de mesure, elle sera un peu moins bien adaptée bien quelle soit en mesure de fournir des résultats de grande qualité.

Pareillement, si lapplication nécessite une étendue de mesure de grande dimension (supérieure à 40 millimètres), linterférométrie faible cohérence devra être préférée à la microscopie confocale. En effet, dans ce domaine détendue de mesure linterférométrie faible cohérence permet daller jusquà 600 mm (voire plusieurs mètres) avec une précision de 100 nm à peine.

Notes et références

  1. Brevet US 3013467 (en) « Microscopy apparatus », Marvin Minsky, 1967
  2. Nasse M. J., Woehl J. C., Huant S., « High-resolution mapping of the three-dimensional point spread function in the near-focus region of a confocal microscope », dans Appl. Phys. Lett., vol. 90, no 031106, 2007, p. 031106-1-3 [lien DOI] 
  3. (en) Pawley JB (editor), Handbook of Biological Confocal Microscopy, Berlin, Springer, 2006, 3rd ed.e éd. (ISBN 978-0-387-25921-5) (LCCN 2005926334) 

Liens externes



Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Microscope confocal de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Microscope Confocal — Pour les articles homonymes, voir Microscope. Un microscope confocal est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ 400 nm) appelées « sections optiques ». En… …   Wikipédia en Français

  • Microscope Confocal À Balayage Laser — Microscope confocal Pour les articles homonymes, voir Microscope. Un microscope confocal est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ 400 nm) appelées « sections… …   Wikipédia en Français

  • Microscope confocal a balayage laser — Microscope confocal Pour les articles homonymes, voir Microscope. Un microscope confocal est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ 400 nm) appelées « sections… …   Wikipédia en Français

  • Microscope confocal à balayage laser — Microscope confocal Pour les articles homonymes, voir Microscope. Un microscope confocal est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ 400 nm) appelées « sections… …   Wikipédia en Français

  • Microscope laser confocal à balayage — Microscope confocal Pour les articles homonymes, voir Microscope. Un microscope confocal est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ 400 nm) appelées « sections… …   Wikipédia en Français

  • Microscope laser confocale à balayage — Microscope confocal Pour les articles homonymes, voir Microscope. Un microscope confocal est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ 400 nm) appelées « sections… …   Wikipédia en Français

  • Confocal microscopy — Diagnostics MeSH D018613 OPS 301 code 3 301 …   Wikipedia

  • Microscope Optique — Pour les articles homonymes, voir Microscope. Un microscope optique de base. Le m …   Wikipédia en Français

  • Microscope photonique — Microscope optique Pour les articles homonymes, voir Microscope. Un microscope optique de base. Le m …   Wikipédia en Français

  • Microscope à fond noir — Microscope optique Pour les articles homonymes, voir Microscope. Un microscope optique de base. Le m …   Wikipédia en Français

Share the article and excerpts

Direct link
https://fr-academic.com/dic.nsf/frwiki/1162568 Do a right-click on the link above
and select “Copy Link”